
Report Into Internet Speed Testing IoT
Mini-Project

Isaac Basque-Rice

BSc. (Hons.) Ethical Hacking
Abertay University

Dundee, United Kingdom
1901124@abertay.ac.uk

January 24th, 2023
1497 Words

Contents

List of Figures i

List of Acronyms i

1 Introduction 1
1.1 Relevance to System Internals & Cybersecurity 1
1.2 Objectives . 2

2 Methodology 3
2.1 Raspberry Pi . 3
2.2 Cloud . 6

3 Conclusion 9
3.1 Discussion . 9
3.2 Future Work . 9

References 10

A Raspberry Pi Code 11
A.1 button.c LKM . 11
A.2 Makefile . 14
A.3 userspace.c . 14
A.4 speedtester.py . 17
A.5 mqtt sender.py . 20

B Cloud Code 21
B.1 app.py . 21
B.2 mqtt receiver . 21
B.3 index.html . 22
B.4 main.css . 24

List of Figures

1 The output of the speedtester.py tool 3
2 The commands inputted by the developer to compile and run

the LKM and associated programs 4
3 A flow chart of the processes that take place on the client

(Raspberry Pi) side, from button press to sending data. 5
4 The Raspberry Pi in its final form, correctly wired up and

plugged into a power source. 6
5 The webpage the developer created to display the results of

the speed tester . 7
6 The Certbot tool used to gain an Secure Sockets Layer (SSL)

certificate for the domain name associated with the speedtest
web app . 8

7 The list of inbound rules for the speedtester website, showing
that Secure Shell (SSH) is only accessible via the developer’s
IP address . 8

List of Acronyms

DoS Denial of Service

AWS Amazon Web Services

LED Light Emitting Diode

GPIO General-Purpose Input/Output

CLI Command Line Interface

LKM Linux Kernel Module

SSID Service Set Identifier

JSON JavaScript Object Notation

EC2 Elastic Compute Cloud

MQTT Message Queueing Telemetry Transport

IoT Internet of Things

SSL Secure Sockets Layer

HTTPS Hypertext Transfer Protocol Secure

GUI Graphical User Interface

SSH Secure Shell

1 Introduction

Monitoring networks is crucial as reliance on them grows in the internet age.
Businesses need stable, low-latency networks to function and changes can
result in significant revenue losses. Implementing a monitoring system can
benefit organizations and individuals.

The project aims to create a hardware network speed tester with a web
server on Amazon Web Services (AWS) to display results. It will consist of
a Raspberry Pi Zero W, a button to start the test, and an Light Emitting
Diode (LED) to indicate that the speedtest is running. Supporting hardware
such as resistors, wires, and a breadboard will also be used, all connected to
the Pi’s General-Purpose Input/Output (GPIO) pins.

1.1 Relevance to System Internals & Cybersecurity

This project is relevant to System Internals in several areas, particularly the
usage of GPIO pins and specific input and output devices interfacing with
the device at a low level. It requires interfacing with Linux OS through Linux
Kernel Module (LKM)s, which are code that can be loaded and unloaded into
the kernel at runtime to provide functionality for new hardware. The project
will use an LKM developed by the author to enable the button, which in
turn will run the test.

Regarding Cybersecurity, the AWS web server must be set up correctly
and securely. Users’ IP addresses can potentially be identifying features of
their network, and if the website is not set up securely then the security of the
user of the device could be compromised, leaving the door open to an attack
such as a network Denial of Service (DoS) or further intrusion. Additionally,
if the site’s integrity is not maintained then the results of the test could be
open to tampering. This issue will be mitigated by the use of SSL/Hypertext
Transfer Protocol Secure (HTTPS), which encrypts user traffic.

Additionally, an improperly developed LKM can have serious security im-
plications, as it can allow an attacker to gain privileged access to the system.
LKMs run with kernel-level privileges, so a vulnerability in an LKM can be
used to as a method of Privilege Escalation and potentially compromise the
entire system. Improperly developed LKMs can also cause system crashes or
data loss. To minimize the security risks associated with LKMs, the devel-
oper will follow secure coding practices and thoroughly test the LKM before
deploying the project.

1

1.2 Objectives

The overall objectives of this project are as follows, in order of when they
are to be achieved:

• Set up basic speed testing capabilities on Raspberry Pi Command Line
Interface (CLI)

• Correctly wire up all relevant hardware

• Trigger speed testing on button press

• light up LED(s) on command

• Create and host site using AWS web server

• Send data from speedtest to the web server

2

2 Methodology

2.1 Raspberry Pi

Project work began on the developer’s Linux-based laptop initially due to
the winter break restricting the hardware available to them. As such, the
developer decided to develop as much as they could on their device and
transfer it over at a later stage.

All of the code developed for use on the Pi is available in Appendix A,
also, a new password was created on the Pi using the passwd command, this
meant that only the developer had access to it.

The first program the developer created was speedtester.py, which is
a CLI program making use of the speedtest-cli Python module (Martz
2021) that would record several pieces of information such as the network
Service Set Identifier (SSID), start time, download, upload, ping, and time
to complete, and write them to a JavaScript Object Notation (JSON) file for
later use in the web server. Figure 1 shows the CLI output of the tool.

Figure 1: The output of the speedtester.py tool

The main piece of work that had to be created for the Pi was the but-
ton LKM. This piece of software, designed to be run in kernel space, al-
lows for the speedtest.py file to be ran on button press using a separate
userspace program as an intermediary. An intermediary was used here as
it is inadvisable to run a userspace application directly from kernel space,
this application was intentionally left as concise as possible to ensure no se-
curity or stability complications arose. A tutorial on this was provided by
johannes4gnulinuxLetCodeLinux2022 (johannes4gnulinuxLetCodeLinux2022).

This intermediary, userspace.c, registers itself to the LKM using the
REGISTER SAPP macro, which contains the magic numbers ‘R’, ‘g’, which

3

are present in both the LKM and the userspace app, as well as the SIGTX

macro, which is used to send the correct signal. The program then sends the
signal using SIGTX and the signalhandler function which calls and runs
the speedtester.py tool. A device file was created for the button to use at
/dev/irq signal, and was interacted with in the userspace.c app using
O RDONLY as an argument.

The speedtester.py file does the bulk of the work in userland. Function-
ality is present to first turn on the LED when the process gets called, start
a timer run the speedtest, and save it to a JSON object. Figure 2 outlines
the full process of compilation, LKM insertion, and program execution.

Figure 2: The commands inputted by the developer to compile and run the
LKM and associated programs

The userspace intermediary also triggers mqtt sender.py, which sends
the JSON data to the server using Message Queueing Telemetry Transport
(MQTT). It does this by creating an MQTT client, setting authentication
tokens, and a ”topic” (an identifying string for any message being sent or
received), connecting to the broker (the Elastic Compute Cloud (EC2)), and
then converting the JSON file to a string and sending that string over the
internet to the broker using client.publish(topic, data). Figure 3 is a
flow chart representing the process that takes place on the Pi.

4

Figure 3: A flow chart of the processes that take place on the client (Rasp-
berry Pi) side, from button press to sending data.

5

Finally, shown in Figure 4 is an image of the Pi wired up correctly to a
button, which starts the speedtester process, and an LED, which comes on
when the process has begun.

Figure 4: The Raspberry Pi in its final form, correctly wired up and plugged
into a power source.

2.2 Cloud

As with the previous section, work began on the developer’s laptop. The
first piece of work developed was a webpage designed to display the results
of said speedtest program. The JSON data returned from the program was
first moved to the working directory for the webpage manually, however at a
later stage when it was migrated to AWS, this was altered to be performed
automatically. All cloud code is available in Appendix B

The developer used the Flask web framework (Pallets n.d.), due to its
lightweight approach to web design which fits with the requirements of the
site, its ease of use, and the fact its scripting language is Python, which the
developer is familiar with. Figure 5 shows a screenshot of the website in an
early stage of development, being hosted locally.

6

Figure 5: The webpage the developer created to display the results of the
speed tester

The data.json file is available through a flask endpoint called \data
which is opened on initialisation of the site. Clicking the button here runs
a javascript function called CreateTable() which clears the contents of a
pre-existing table, makes a GET request to the endpoint, parses the resulting
JSON data, and displays it.

The project uses an AWS EC2 instance running Ubuntu, which serves
the app. Setup followed Huiyeon’s (2020) step-by-step guide.

Once the web server was up and running, work began on devising a
method of sending the JSON object from the Pi to the EC2. The devel-
oper settled on using MQTT due to the fact it is the de facto standard
for Internet of Things (IoT) messaging. It provides lightweight, efficient,
and reliable communication over many networks, including unreliable ones
(MQTT.org n.d.).

As shown in Figure 3, mqtt sender.py, which is called by userspace.c,
is responsible for sending the data. Its counterpart on the server-side is
mqtt receiver.py which subscribes to the same topic as the sender, uses
the same authentication tokens, receives the text string sent by that script,
and saves it to data.json on the server.

Finally, to ensure a secure connection, SSL/HTTPS should be set up.
A domain was registered at http://ibr-cmp408.abertaycoursework.net/ and
associated to the elastic IP address for the EC2 instance (54.22.196.181).
To gain an SSL certificate the developer used the Certbot tool (EFF n.d.),
the usage of which can be seen in Figure 6. Figure 7 shows the security group
configuration of the EC2.

7

Figure 6: The Certbot tool used to gain an SSL certificate for the domain
name associated with the speedtest web app

Figure 7: The list of inbound rules for the speedtester website, showing that
SSH is only accessible via the developer’s IP address

8

3 Conclusion

3.1 Discussion

This project makes use of several publicly available Python libraries to im-
plement a network speedtester on a Raspberry Pi, write the data to a JSON
library, and send it to an AWS EC2 instance using MQTT brokers. An LKM
was implemented that registered a button click action and triggered the speed
testing script before sending it to the server, and a custom Graphical User
Interface (GUI) was developed to securely display the results of the speedtest.
Additionally, an LED is used to inform the user that the speedtest is running
when they do not have access to the Pi’s CLI.

3.2 Future Work

The implementation of this project was generally successful, as mentioned
above the majority of aims were met. Given further time and resources,
however, some improvements could be made.

Firstly, the developer’s preference was to use two LEDs, one for when the
test is running and another for standby, due to a lack of resistors only one
LED was able to be implemented. If another were to be added without a
resistor the LED may draw more power than required, burning out the Pi
(The Pi Hut 2015).

Additionally, the web interface could be improved with more statistics,
possibly graphing capabilities to demonstrate how each network has changed
over time, and filtering by only one field such as Up/Download, ping, etc.

9

References

EFF (n.d.). Certbot Instructions. url: https : / / certbot . eff . org /

instructions?ws=nginx&os=ubuntufocal (visited on Jan. 24, 2023).
Huiyeon, K. (June 9, 2020). Step-by-Step Visual Guide on Deploying a Flask

Application on AWS EC2. Tech Front. url: https://medium.com/
techfront/step-by-step-visual-guide-on-deploying-a-flask-

application-on-aws-ec2-8e3e8b82c4f7 (visited on Jan. 22, 2023).
Johannes 4GNU Linux, director (Feb. 25, 2022). Let’s Code a Linux Driver

- 15: Sending a Signal from Kernel to Userspace. url: https://www.
youtube.com/watch?v=nt_z07t7qMc (visited on Jan. 23, 2023).

Martz, M. (Apr. 8, 2021). Speedtest-Cli: Command Line Interface for Testing
Internet Bandwidth Using Speedtest.Net. Version 2.1.3. url: https://
github.com/sivel/speedtest-cli (visited on Dec. 16, 2022).

MQTT.org (n.d.). MQTT - The Standard for IoT Messaging. url: https:
//mqtt.org/ (visited on Jan. 23, 2023).

Pallets (n.d.). Welcome to Flask — Flask Documentation (2.2.x). url:
https://flask.palletsprojects.com/en/2.2.x/ (visited on Jan. 13,
2023).

Soren (Feb. 9, 2018). Using a Push Button with Raspberry Pi GPIO — Rasp-
berry Pi HQ. url: https://raspberrypihq.com/use-a-push-button-
with-raspberry-pi-gpio/ (visited on Dec. 16, 2022).

The Pi Hut (June 11, 2015). Turning on an LED with Your Raspberry Pi’s
GPIO Pins — The Pi Hut. url: https : / / thepihut . com / blogs /

raspberry- pi- tutorials/27968772- turning- on- an- led- with-

your-raspberry-pis-gpio-pins (visited on Jan. 23, 2023).

10

https://certbot.eff.org/instructions?ws=nginx&os=ubuntufocal
https://certbot.eff.org/instructions?ws=nginx&os=ubuntufocal
https://medium.com/techfront/step-by-step-visual-guide-on-deploying-a-flask-application-on-aws-ec2-8e3e8b82c4f7
https://medium.com/techfront/step-by-step-visual-guide-on-deploying-a-flask-application-on-aws-ec2-8e3e8b82c4f7
https://medium.com/techfront/step-by-step-visual-guide-on-deploying-a-flask-application-on-aws-ec2-8e3e8b82c4f7
https://www.youtube.com/watch?v=nt_z07t7qMc
https://www.youtube.com/watch?v=nt_z07t7qMc
https://github.com/sivel/speedtest-cli
https://github.com/sivel/speedtest-cli
https://mqtt.org/
https://mqtt.org/
https://flask.palletsprojects.com/en/2.2.x/
https://raspberrypihq.com/use-a-push-button-with-raspberry-pi-gpio/
https://raspberrypihq.com/use-a-push-button-with-raspberry-pi-gpio/
https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins
https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins
https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins

A Raspberry Pi Code

A.1 button.c LKM

#include <linux/module.h>

#include <linux/init.h>

#include <linux/gpio.h>

#include <linux/cdev.h>

#include <linux/interrupt.h>

#include <linux/fs.h>

#include <linux/sched/signal.h>

#include <linux/ioctl.h>

#include <linux/kernel.h>

// This kernel module will register an interrupt request (IRQ) on the falling edge

// (i.e., button press) of the specified GPIO pin. This will then trigger the speedtest.py program

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Isaac Basque-Rice");

MODULE_DESCRIPTION("A simple Linux kernel module to detect button press on a Raspberry Pi");

// Ensure button is always on this GPIO pin, if it's not change this value

#define BUTTON_GPIO 17

#define BUTTON_MAJOR 64

// pin number / interrupt controller to which BUTTON_GPIO is mapped

unsigned int irq_number;

// Variables for speedtester registration

#define REGISTER_SAPP _IO('R', 'g')

static struct task_struct *task = NULL;

// Define for signal sending

#define SIGNR 44

// This calls an interrupt service routine when the interrupt is triggered

static irq_handler_t button_signal_handler(unsigned int irq, void *dev_id, struct pt_regs *regs)

{

struct siginfo info;

printk("Interrupt was triggered and ISR was called\n");

11

if(task != NULL) {

memset(&info, 0, sizeof(info));

info.si_signo = SIGNR;

info.si_code = SI_QUEUE;

/* Send the signal */

if(send_sig_info(SIGNR, (struct kernel_siginfo *) &info, task) < 0)

printk("Error sending signal\n");

}

return (irq_handler_t) IRQ_HANDLED;

}

// This is an IOCTL function for registering the speedtester to the LKM

static long int button_ioctl(struct file *file, unsigned cmd, unsigned long arg)

{

if(cmd == REGISTER_SAPP) {

task = get_current();

printk("Userspace app with PID %d is registered \n", task->pid);

}

return 0;

}

// This function is called when the device file is opened

static int button_close(struct inode *device_file, struct file *instance) {

if(task != NULL)

task = NULL;

return 0;

}

static struct file_operations fops = {

.owner = THIS_MODULE,

.release = button_close,

.unlocked_ioctl = button_ioctl,

};

static int __init button_init(void)

{

int err = 0;

12

printk("Loading module... ");

// Request the GPIO

if (!gpio_is_valid(BUTTON_GPIO)) {

printk(KERN_ERR "Invalid GPIO\n");

return -ENODEV;

}

if(gpio_direction_input(BUTTON_GPIO)) {

printk("Error!\nCan not set GPIO 17 to input!\n");

gpio_free(BUTTON_GPIO);

return -1;

}

if ((err = gpio_request(BUTTON_GPIO, "button_gpio"))) {

printk(KERN_ERR "Failed to request GPIO\n");

return err;

}

gpio_set_debounce(BUTTON_GPIO, 300);

// set up interrupt

irq_number = gpio_to_irq(BUTTON_GPIO);

free_irq(irq_number, NULL);

// Enable IRQ on falling edge (button press)

if ((err = request_irq(irq_number, (irq_handler_t) button_signal_handler, IRQF_TRIGGER_FALLING, "button_irq", NULL))) {

printk(KERN_ERR "Failed to request IRQ\n");

gpio_free(BUTTON_GPIO);

return err;

}

if(register_chrdev(BUTTON_MAJOR, "gpio_irq_signal", &fops) < 0)

{

printk("Error!\n Can't register device Number!\n");

gpio_free(BUTTON_GPIO);

free_irq(irq_number, NULL);

}

printk(KERN_INFO "Button module initialized\n");

13

printk("GPIO pin is mapped to IRQ no.: %d\n", irq_number);

return 0;

}

static void __exit button_exit(void)

{

printk("Unloading module...");

// Free the IRQ and GPIO

free_irq(irq_number, NULL);

gpio_free(BUTTON_GPIO);

unregister_chrdev(BUTTON_MAJOR, "gpio_irq_signal");

printk("Module unloaded\n");

}

module_init(button_init);

module_exit(button_exit);

A.2 Makefile

obj-m := button.o

KDIR := /usr/src/linux-headers-$(shell uname -r)

all:

$(MAKE) -C $(KDIR) M=$(PWD) modules

clean:

$(MAKE) -C $(KDIR) M=$(PWD) clean

A.3 userspace.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <signal.h>

#define SIGTX 44

14

#define REGISTER_SAPP _IO('R', 'g')

/* This app serves as a userspace intermediary between the LKM running on the Pi and the Speedtester app

Python is seemingly unable to interface between itself and the LKM so as a result it was easier to implement this in C

Partial credit is due to Johannes4Linux who provided boilerplate to allow for the LKM to actually interface with a userspace application */

void signalhandler(int sig) {

FILE *fp;

char path[1035];

printf("Userspace: Signal Received!\n");

printf("Userspace: Running speedtester.py\n\n");

// Open the command for reading.

fp = popen("python3 speedtester.py", "r");

if (fp == NULL) {

printf("Userspace: Failed to run speedtester\n");

exit(1);

}

// Read the output a line at a time - output it.

while (fgets(path, sizeof(path)-1, fp) != NULL) {

printf("%s", path);

}

// close

pclose(fp);

printf("Userspace: Running mqtt_sender.py\n\n");

// Open the command for reading.

fp = popen("python3 mqtt_sender.py", "r");

if (fp == NULL) {

printf("Userspace: Failed to run mqtt_sender\n");

exit(1);

}

// Read the output a line at a time - output it.

while (fgets(path, sizeof(path)-1, fp) != NULL) {

printf("%s", path);

}

15

// close

pclose(fp);

printf("Userspace: Wait for signal...\n");

return 0;

}

int main() {

int fd;

signal(SIGTX, signalhandler);

printf("PID: %d\n", getpid());

// Open the device file

fd = open("/dev/irq_signal", O_RDONLY);

if(fd < 0) {

perror("Userspace: Could not open device file");

return -1;

}

// Register app to KM

if(ioctl(fd, REGISTER_SAPP, NULL)) {

perror("Userspace: Error registering app");

close(fd);

return -1;

}

// Wait for Signal

printf("Userspace: Wait for signal...\n");

while(1)

sleep(1);

return 0;

}

16

A.4 speedtester.py

#!/usr/bin/env python3

"""

Name: speedtester.py

Desc: a program to test the speed of a computer network

Auth: Isaac Basque-Rice

Date: 24/12/2022

"""

import time

import json

import os

import speedtest

import paho.mqtt.client as mqtt

import RPi.GPIO as GPIO

def send_to_json(now, ssid, down_speed, up_speed, ping, runtime):

""" sends data from test function to a JSON object """

ssid = str.strip(ssid) # removes \n

full list of information to send to JSON object

dictionary = {

"Start time": now,

"Network name": ssid,

"Down speed": down_speed,

"Up speed": up_speed,

"Ping": ping,

"Run time": runtime

}

filename = "data.json"

loads the existing data from the file

with open(filename, "r", encoding='ascii') as infile:

data = []

while True:

try:

17

obj = json.load(infile)

data.extend(obj)

except ValueError:

reached the end of the file

break

append the new dictionary to the list of data

data.append(dictionary)

dumps formats it properly (dump makes it a one-liner)

json_object = json.dumps(data, indent = 4)

write the new list of data to the file

with open(filename, "w", encoding='ascii') as outfile:

outfile.write(json_object)

def test():

""" Performs the speedtest and prints download, upload speeds and ping """

speed = speedtest.Speedtest()

apparently I need this for ping? idk

server_names = []

speed.get_servers(server_names)

down_speed = speed.download()

up_speed = speed.upload()

ping = speed.results.ping

will eventually find a neat way to convert bits to megabits or gigabits

print("Download speed: " + str(int(down_speed)) + " b/s")

print("Upload speed: " + str(int(up_speed)) + " b/s")

print("Ping: " + str(int(ping)) + " ms")

casting to int to make the numbers less unwieldy lol

return int(down_speed), int(up_speed), int(ping)

def main():

""" The main function """

18

start = time.time()

GPIO Settings

pin_number = 9

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(pin_number,GPIO.OUT)

Turn on LED

GPIO.output(pin_number, GPIO.LOW)

now = time.ctime(start) # neater format (no epoch for human consumption)

ssid = os.popen("iwgetid -r").read() # get SSID from OS shell

print("SSID: " + ssid + "\nStart Time: " + str(now))

run the function and grab all the values

down_speed, up_speed, ping = test()

end = time.time()

print("Speedtest completed in " + str(int(end-start)) + " seconds")

print("Writing to JSON object...")

send that to the JSON object

send_to_json(now, ssid, down_speed, up_speed, ping, int(end-start))

Turn off LED

GPIO.output(pin_number, GPIO.HIGH)

print("Speedtest complete\n")

if __name__ == "__main__":

main()

19

A.5 mqtt sender.py

#!/usr/bin/env python3

"""

Name: mqtt_sender.py

Desc: an app to send the data.json file over MQTT to the EC2 instance

Auth: Isaac Basque-Rice

Date: 22/01/2023

"""

import paho.mqtt.client as mqtt

import json

MQTT settings

broker_address = "52.22.196.181"

username = "user"

password = "password"

topic = "speedtest-data"

Create MQTT client

client = mqtt.Client()

Set username and password as auth tokens

client.username_pw_set(username, password)

Connect to broker

client.connect(broker_address)

Read the JSON file

with open("data.json", "r") as f:

data = json.load(f)

Convert the JSON data to a string

data_str = json.dumps(data)

Send the JSON data to the server

client.publish(topic, data_str)

Disconnect from broker

client.disconnect()

20

B Cloud Code

B.1 app.py

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')

def index(): # put application's code here

return render_template("index.html")

@app.route('/data')

def data():

with open('data.json', 'r') as file:

data = file.read()

file.close()

return data

if __name__ == '__main__':

app.run()

B.2 mqtt receiver

#!/usr/bin/env python3

"""

Name: mqtt_receiver.py

Desc: an app to receive the data.json file over MQTT from the Raspberry Pi

Auth: Isaac Basque-Rice

Date 22/01/2023

"""

import paho.mqtt.client as mqtt

import json

MQTT settings

broker_address = "3.91.200.59"

username = "user"

password = "password"

21

topic = "testdata"

Create MQTT client

client = mqtt.Client()

Set username and password as auth tokens

client.username_pw_set(username, password)

Connect to broker

client.connect(broker_address)

Subscribe to topic

client.subscribe(topic)

Define callback function for incoming messages

def on_message(client, userdata, message):

convert the received message (string) to json format

data = json.loads(message.payload)

save the json data to a file named "data.json"

with open("data.json", "w") as f:

json.dump(data, f)

print("Data saved to disk")

Set callback function

client.on_message = on_message

client.loop_forever()

B.3 index.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Network Speedtester</title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta http-equiv="X-UA-Compatible" content="ie=edge">

<link rel="stylesheet" type="text/css" href="{{ url_for('static',filename='styles/main.css') }}">

</head>

<body>

22

<h1>Isaac's Speed Tester</h1>

<table>

<thead>

<th>Start Time</th>

<th>Network Name</th>

<th>Down Speed (b/s)</th>

<th>Up Speed (b/s)</th>

<th>Ping (ms)</th>

<th>Run Time (s)</th>

</thead>

<tbody id="table">

</tbody>

</table>

<input type="button" class="button" onclick="CreateTable()" value="Click Here To Display Data" />

<script>

function CreateTable() {

const table = document.getElementById("table");

table.innerHTML = "";

fetch("/data").then(res=>res.json()).then(res => {

const items = res; // Change this line to access the data directly

items.forEach(item => {

const tr = document.createElement("tr");

["Start time", "Network name", "Down speed", "Up speed", "Ping", "Run time"].forEach(label => {

const td = document.createElement("td");

td.innerText = item[label];

tr.appendChild(td);

});

table.appendChild(tr);

});

});

}

</script>

</body>

</html>

23

B.4 main.css

body {

background-color: #282a36;

}

h1 {

text-align: center;

padding: 10px;

color: #f8f8f2;

font:32px helvetica, verdana, sans-serif;

}

table {

border: solid 1px #282828;

border-collapse: collapse;

padding: 2px 3px;

text-align: center;

margin: 0 auto;

width: 50%;

background-color: #44475a;

color: #f8f8f2;

}

th, td {

font:14px helvetica;

color: #ffffff;

}

th {

font-weight: bold;

}

p, input {

font:14px helvetica;

color: #ffffff;

}

.button {

margin: 0 auto;

display: block;

24

width: 50%;

background-color: #6272a4;

color: #f8f8f2;

border: none;

padding: 10px;

text-align: center;

}

.button:hover {

box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24),0 17px 50px 0 rgba(0,0,0,0.19);

}

25

	List of Figures
	List of Acronyms
	Introduction
	Relevance to System Internals & Cybersecurity
	Objectives

	Methodology
	Raspberry Pi
	Cloud

	Conclusion
	Discussion
	Future Work

	References
	Raspberry Pi Code
	button.c LKM
	Makefile
	userspace.c
	speedtester.py
	mqtt_sender.py

	Cloud Code
	app.py
	mqtt_receiver
	index.html
	main.css

