
Software Security Report Concerning
ScottishGlen

Isaac Basque-Rice

BSc. (Hons.) Ethical Hacking
Abertay University

Dundee, United Kingdom
1901124@abertay.ac.uk

14th March, 2023
1991 Words



Contents

List of Figures i

List of Acronyms i

1 Context 1
1.1 CVE Database . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overflow Vulnerabilities . . . . . . . . . . . . . . . . . . . . . 2

2 Recommendation 5

3 Implementation 7
3.1 CVE-2017-15088 . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Prevention and Mitigation . . . . . . . . . . . . . . . . . . . . 7

References 9



List of Figures

1 A slide showing how a buffer overflow works and how it can
be used to execute malicious shellcode (Nickle@NSC 2014) . . 3

List of Acronyms

AD Active Directory

CA Certificate Authority

CERT Computer Emergency Response Team

CNA CVE Numbering Authority

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DN Distinguished Name

DoS Denial of Service

EIP Extended Instruction Pointer

KDC Key Distribution Center

MIT Massachusetts Institute of Technology

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

OWASP Open Worldwide Application Security Project

SEI Software Engineering Institute



1 Context

The energy company ScottishGlen is a small organisation within the energy
sector. In response to a recent series of threats made against the organisation,
via its employees, by a hacktivist group displeased by comments made by the
CEO, the IT manager for ScottishGlen has been tasked with analysing the
tech stack being used by the organisation from a security perspective. This is
in order to mitigate, or ideally prevent, the hacktivist group from successfully
carrying out their attack on the network.

ScottishGlen makes use of the Kerberos network authentication system,
which has the potential to be exploited at some point in the future by a
malicious actor and/or hacktivist group displeased with the organisation.

Kerberos is a popular system developed by the Massachusetts Institute
of Technology (MIT) and implemented in client/server applications to al-
low users to authenticate their identity, normally for cases including email
servers, file servers, Active Directory (AD), and other areas such as this (Katz
2021). Kerberos is “the default authorization technology used by Microsoft
Windows” and additionally has functionality in Apple OS, UNIX, Linux, and
FreeBSD (Buckbee 2020).

Naturally, due to the popularity of this system and its proximity to possi-
bly valuable credentials, there are a significant number of security researchers
analysing Kerberos, which in turn results in a considerable amount of vul-
nerabilities that can be found in the Common Vulnerabilities and Expo-
sures (CVE) database. This section of the report will go into detail about
a select number of these vulnerabilities that share a common classification,
specifically Overflow vulnerabilities.

1.1 CVE Database

The CVE database (also called the National Vulnerability Database (NVD))
is a database maintained by the US Government’s National Institute of Stan-
dards and Technology (NIST). It is a repository of reported known vulner-
abilities categorised (in part) by classification, i.e. what kind of issue it is,
and its severity, which will be touched upon in a following paragraph. The
database itself also provides a brief description of the vulnerability in ques-
tion as well as a number of references, links to Proofs of Concept, technical
advisory documents, and other important information crucial to a full un-
derstanding of the issue in question.

Each CVE is issued by a trusted CVE Numbering Authority (CNA), such
as IBM, Microsoft, Red Hat, and so on, and is given a unique identifier in the
format CVE-YYYY-XXXX, where Y is the year the vulnerability was reported,

1



and X is a further specific identifier.
The CVE database makes use of the Common Vulnerability Scoring Sys-

tem (CVSS), which is a method of evaluating the severity of a vulnerability.
This is a numerical scoring system represented on a scale of 0.0 to 10.0, where
10.0 is the most critical vulnerability. This system can also be represented
in a more qualitative manner, where specific value ranges can be translated
into either ‘low’, ‘medium’, ‘high’, or ‘critical’ “to help organizations prop-
erly assess and prioritize their vulnerability management processes.” (Forum
of Incident Response and Security Teams, Inc. n.d.).

1.2 Overflow Vulnerabilities

There are many different classifications of vulnerability, such as Injection,
Man-in-the-Middle, Code Execution, Denial of Service (DoS), and so on. All
of these vulnerabilities are exploited in different ways and therefore must be
mitigated in different ways. As of the writing of this document, Kerberos has
been the subject of a total of 302 vulnerabilities, of which 34 were Overflow
vulnerabilities (MITRE n.d.).

An Overflow vulnerability, also called Buffer Overflows or Buffer Over-
runs, is a classification of vulnerability caused by an error in development.
They occur when a ‘buffer’, which is a space in memory that persists for a
relatively short period of time as a temporary storage area, holds data as it is
being transferred from one location to another to perform an action (Chris-
tensson 2006). Most people are familiar with the concept of a buffer from
streaming platforms such as YouTube or Spotify, where the services pre-load
a section of the streaming media into a buffer to prevent minor downtime on
a network from interrupting the viewing or listening experience.

Many computer programs make use of buffers in the same way, however,
unlike media streaming platforms, the buffer is of finite size and can be
overloaded. When a buffer is allocated more data than it is able to hold,
or when data is placed past the buffer (OWASP Foundation n.d.). This can
allow a malicious actor to insert their own ‘shellcode’, which in turn could
result in arbitrary code execution on the device in which the vulnerable
software is hosted. Figure 1 shows a high-level overview of how this is done.

2



Figure 1: A slide showing how a buffer overflow works and how it can be
used to execute malicious shellcode (Nickle@NSC 2014)

When an overflow has been performed the program in question crashes.
At this stage, the shellcode is placed inside the Extended Instruction Pointer
(EIP), which is responsible for executing any given instructions. Buffer Over-
flows are especially common in more ‘low-level’ languages, such as C or C++
due to a lack of checks at compile-time within the language itself for overrun
exceptions (Pornin 2016).

One particularly famous example of a Buffer Overflow being exploited
in the wild (and, indeed, the first), was the so-called ‘Morris Worm’. This
worm, created by Robert Tappan Morris, was distributed to the MIT campus
in November of 1988 (Federal Bureau of Investigation n.d.). This worm made
use of (amongst other things) a vulnerability in finger, which is a UNIX
utility that “matches an e-mail address with the person who owns it and
provides information about that person” (Shultz 2001).

This worm was primarily designed to demonstrate the alarmingly relaxed
cybersecurity approach common at MIT at the time. However, due to a
coding error that Morris made, the worm grew out of hand and had a DoS

3



like effect on the network. Morris was indicted and found guilty under the
newly minted Computer Fraud and Misuse act, making him the very first
person convicted under this law (Federal Bureau of Investigation n.d.).

4



2 Recommendation

The onus is on the developers and technical staff at ScottishGlen to properly
prevent and mitigate the possible exploitation of a Buffer Overflow vulnera-
bility in the context of the Kerberos authentication system on their network.
There are many ways they could go about this task, however, the recom-
mendation of this report is for these developers to implement secure coding
practices, as this is possibly the simplest and most straightforward option
available, whilst still providing adequate levels of security.

The term ‘secure coding practices’ refers to a series of techniques and
guidelines, designed to be implemented into the standard development life-
cycle, that improve and maintain the code, and ensure the possible risks
introduced by a given vulnerability are adequately mitigated (Turpin, Gads-
den, and OWASP Foundation 2022).

The Secure Coding Practices guide published by the Open Worldwide
Application Security Project (OWASP) provides a checklist of good practice
in a tech-agnostic (i.e. irrespective of what technology is being used) and
easily digestible format, therefore ensuring that the development team can
implement the required items in a practical manner. The checklist format
is especially helpful in this regard as it allows for an easily-identifiable and
collaborative method of development. A developer could, for example, carry
out one of the tasks in this checklist and then tick it off in a publicly-accessible
version of the document.

As mentioned previously, the C programming language (in which Ker-
beros is written) is vulnerable to buffer overflow attacks if secure coding
practices are not in place. The OWASP guide provides a section specifi-
cally regarding memory management, which provides advice on the usage of
known-unsafe functions, validation of buffer sizes (both source and destina-
tion), and ensuring non-executable stacks are used where available.

NIST also provides a similar guide (Information Technology Laboratory
Computer Security Division 2021), which similarly provides guidance around
the methods that should be put in place to ensure secure coding practices.
Where it departs from the OWASP guide however is that it does not imple-
ment a checklist system as such, instead preferring a framework consisting of
four steps: Prepare the Organisation (PO), Protect Software (PS), Produce
Well-Secured Software (PW), and Respond to Vulnerabilities (RV).

A particular practice that this guide provides that should be implemented
in the organisation is the addition of input validation. This is the process
of ensuring the user input into the software or system that is being or has
been developed is valid and within the bounds of what is expected. When
adequate validation has not been implemented, it can cause a number of

5



issues across a wide array of software, from SQL Injection and Cross-Site
Scripting in Web Development, to buffer overflows elsewhere.

Implementing proper input validation, whatever that may be in any given
context, is not, on its own, an adequate preventative method for Buffer Over-
flow attacks. However, it is a crucial mitigation step for the prevention of
less sophisticated attacks (so-called ‘script kiddies’, for example), and, when
paired with other coding practises such as the ones mentioned earlier and
others such as correct variable declaration will ensure the state of security in
ScottishGlen will be greatly improved.

Finally, the implementation of frequent, thorough code reviews is crucial
to the use of all of the recommendations mentioned herein. Without in-
depth knowledge of the code base and the changes made to it in any given
time frame, knowledge about how it could be vulnerable would be difficult
to come by before it is detected by a professional security analyst or, worse,
a malicious actor.

6



3 Implementation

Kerberos has historically been vulnerable to (to date) 37 known overflow
issues (MITRE n.d.). What follows is a description of a vulnerability taken
from the MITRE CVE database that may provide some insight into overflows
in the context of Kerberos. After that will be a section detailing the steps
that an organisation can take to mitigate this vulnerability, making use of
the practices mentioned in the previous section.

3.1 CVE-2017-15088

This vulnerability affects Kerberos 5 up to and including version 1.15.2 and
has a CVSS score of 9.8, which is ‘critical’ (NIST 2017). This is an issue in
pkinit crypto openssl.c’s get matching data() and X509 NAME oneline

ex() functions that limits Distinguished Name (DN) fields to a length of 256
bytes, which is “very small and can be easily overflowed” (kraynopp@km.ru
2017).

This vulnerability is triggered when the relevant Certificate Authority
(CA)’s DN subject line is too long, this can result in a malicious actor lever-
aging that and crafting their own certificate that overflows the buffer and
leads to arbitrary code execution and DoS. This vulnerability only affects
users who run systems that have Kerberos functionality outside of the origi-
nal MIT distribution, such as those using Red Hat Linux, which implements
their own Key Distribution Center (KDC) certauth plugin (NIST 2017, Marǐs
and Buissart 2017).

3.2 Prevention and Mitigation

In the case of CVE-2017-15088, the usage of secure coding practices would
mitigate the risk to the user quite considerably. In particular, input valida-
tion is a recommended course of action, as this vulnerability makes use of
specially crafted input into the program as a leverage point.

Due to the fact that the input in question is not intended to be entered
manually (as in, say, a web form), this vulnerability does not require input
validation in the traditional sense. As input can be crafted manually, how-
ever, this area must be treated as if manual input is the norm, so to speak.
When the input validation check is triggered, the program would, in theory,
throw an exception and either continue to function (if that is possible) or
stop entirely prior to any stage where exploitation of the buffer overflow is
possible.

7



The Software Engineering Institute (SEI) Computer Emergency Response
Team (CERT) C Coding Standards (Software Engineering Institute 2016)
also outlines a number of secure coding practices, of which input validation
forms a significant part. Section FIO30-C provides advice on excluding user
input from format strings. Whilst the CA DN in question here is not a format
string, this section does provide more high-level advice regarding user input
into fields not intended to be reached by a user, specifically to make use of
known-safe memory copying functions in place of unsafe ones.

To conclude, if input validation on the Kerberos network authentication
system is not properly implemented, it could harm the state of security in
ScottishGlen. While input validation alone may not be sufficient to enhance
the company’s security posture, when combined with other secure coding
practices, it could significantly reduce the potential impact of CVE-2017-
15088 on the company. The company should also continuously implement
and update its current codebase in accordance with secure coding guidance
through the usage of code reviews and other such methods, particularly for
the C programming language. This is in order to decrease the risk of cyber-
attacks on the organization such as the one threatened by the hacktivist
group.

8



References

Buckbee, M. (Mar. 29, 2020). Kerberos Authentication Explained. url:
https : / / www . varonis . com / blog / kerberos - authentication -

explained (visited on Feb. 6, 2023).
Christensson, P. (2006). Buffer. In: TechTerms. url: https://techterms.

com/definition/buffer (visited on Mar. 11, 2023).
Federal Bureau of Investigation (n.d.). Morris Worm. Federal Bureau of In-

vestigation. url: https://www.fbi.gov/history/famous- cases/
morris-worm (visited on Mar. 11, 2023).

Forum of Incident Response and Security Teams, Inc. (n.d.). Common Vul-
nerability Scoring System SIG. FIRST — Forum of Incident Response
and Security Teams. url: https://www.first.org/cvss (visited on
Mar. 9, 2023).

Information Technology Laboratory Computer Security Division (Feb. 25,
2021). Secure Software Development Framework — CSRC — CSRC.
CSRC — NIST. url: https://csrc.nist.gov/Projects/ssdf (visited
on Mar. 6, 2023).

Katz, A. (July 19, 2021). How Does Kerberos Work? The Authentication Pro-
tocol Explained. freeCodeCamp.org. url: https://www.freecodecamp.
org/news/how- does- kerberos- work- authentication- protocol/

(visited on Feb. 2, 2023).
kraynopp@km.ru (Aug. 10, 2017). #871698 - Krb5: CVE-2017-15088: Buffer

Overflow in Get matching data() - Debian Bug Report Logs. In collab.
with B. Kaduk et al. E-mail. url: https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=871698 (visited on Feb. 9, 2023).

Marǐs, A. and Buissart, C. (Oct. 19, 2017). 1504045 – (CVE-2017-15088)
CVE-2017-15088 Krb5: Buffer Overflow in Get matching data(). url:
https://bugzilla.redhat.com/show_bug.cgi?id=1504045 (visited on
Feb. 9, 2023).

MITRE (n.d.). CVE - Search Results. url: https://web.archive.org/
web/20230309210309/https://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword=Kerberos (visited on Feb. 7, 2023).
Nickle@NSC (Aug. 20, 2014). “Buffer Overflow Overview”. url: https :

//www.slideserve.com/tovi/buffer- overflow- overview (visited
on Feb. 7, 2023).

NIST (Nov. 23, 2017). NVD - CVE-2017-15088. National Vulnerability
Database. url: https://nvd.nist.gov/vuln/detail/CVE- 2017-
15088 (visited on Feb. 9, 2023).

9

https://www.varonis.com/blog/kerberos-authentication-explained
https://www.varonis.com/blog/kerberos-authentication-explained
https://techterms.com/definition/buffer
https://techterms.com/definition/buffer
https://www.fbi.gov/history/famous-cases/morris-worm
https://www.fbi.gov/history/famous-cases/morris-worm
https://www.first.org/cvss
https://csrc.nist.gov/Projects/ssdf
https://www.freecodecamp.org/news/how-does-kerberos-work-authentication-protocol/
https://www.freecodecamp.org/news/how-does-kerberos-work-authentication-protocol/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=871698
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=871698
https://bugzilla.redhat.com/show_bug.cgi?id=1504045
https://web.archive.org/web/20230309210309/https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Kerberos
https://web.archive.org/web/20230309210309/https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Kerberos
https://web.archive.org/web/20230309210309/https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Kerberos
https://www.slideserve.com/tovi/buffer-overflow-overview
https://www.slideserve.com/tovi/buffer-overflow-overview
https://nvd.nist.gov/vuln/detail/CVE-2017-15088
https://nvd.nist.gov/vuln/detail/CVE-2017-15088


OWASP Foundation (n.d.). Buffer Overflow — OWASP Foundation. url:
https : / / owasp . org / www - community / vulnerabilities / Buffer _

Overflow (visited on Feb. 7, 2023).
Pornin, T. (Feb. 23, 2016). Answer to ”Why Are Programs Written in C

and C++ so Frequently Vulnerable to Overflow Attacks?” Information
Security Stack Exchange. url: https://security.stackexchange.
com/a/115508 (visited on Feb. 7, 2023).

Shultz, G. (June 20, 2001). Everything You Need to Know about TCP/IP?S
Finger Utility. TechRepublic. url: https://www.techrepublic.com/
article/everything-you-need-to-know-about-tcp-ips-finger-

utility/ (visited on Mar. 11, 2023).
Software Engineering Institute (2016). CEI CERT C Coding Standard -

Rules for Developing Safe, Reliable, and Secure Systems. url: https:
//resources.sei.cmu.edu/downloads/secure-coding/assets/sei-

cert-c-coding-standard-2016-v01.pdf.
Turpin, K., Gadsden, J., and OWASP Foundation (Dec. 2022). OWASP Se-

cure Coding Practices-Quick Reference Guide — OWASP Foundation.
url: https://owasp.org/www-project-secure-coding-practices-
quick-reference-guide/ (visited on Feb. 23, 2023).

10

https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://security.stackexchange.com/a/115508
https://security.stackexchange.com/a/115508
https://www.techrepublic.com/article/everything-you-need-to-know-about-tcp-ips-finger-utility/
https://www.techrepublic.com/article/everything-you-need-to-know-about-tcp-ips-finger-utility/
https://www.techrepublic.com/article/everything-you-need-to-know-about-tcp-ips-finger-utility/
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/

	List of Figures
	List of Acronyms
	Context
	CVE Database
	Overflow Vulnerabilities

	Recommendation
	Implementation
	CVE-2017-15088
	Prevention and Mitigation

	References

