
Cheaters Could Prosper: An Analysis of the Security of Video
Game Anti-Cheat

Isaac Basque-Rice

School of Design and Informatics
Abertay University

DUNDEE, DD1 1HG, UK

ABSTRACT
Context: Video game anti-cheat software is of vital
significance to the modern video game industry. Cheating
in video games can have a seriously detrimental effect
on both the industry itself and users’ enjoyment of the
industry’s products. However many concerns have been
raised by a wide variety of parties around the intrusiveness,
security, and stability of many of these anti-cheat programs
given their perceived intrusion into lower and lower levels
of the users’ operating systems, including kernel ring 0.
Aim: To evaluate the capability of video game anti-cheat
software to effectively identify vulnerabilities that may
have a detrimental effect on the end user.
Method: Given anti-cheat developers’ well-known aver-
sion to allowing easy investigation of their software,
the primary method of analysis will be through reverse
engineering the cheats themselves. This has the added
benefit of certain vulnerabilities already being identified
by the cheat developer, much like a proof-of-concept in the
wider security field. Particular attention will be paid to
those anti-cheat platforms that make use of kernel ring 0
permissions, as well as those software that have already
demonstrated a lack of security. This is because they are
the ones that are more likely to cause serious issues should
they be compromised.
Results: This project will demonstrate the security
of various anti-cheat platforms. Any vulnerabilities
discovered will be responsibly disclosed to the relevant
parties. Noteworthy findings outwith security concerns,
such as novel techniques for performing certain technical
actions, will be noted in the report and either disclosed or
will form the basis of further work.
Conclusion: The information collected from work during
this project will inform users and organisations of the
possible risks present within the context of video game
anti-cheat. If vulnerabilities are found in a popular anti-
cheat platform this may result in significant quantities
of devices being open to compromise, and, in the worst
case, malicious actors appropriating vulnerable anti-cheat
drivers for their malware campaigns independent of
whether the games are installed.
Keywords
Anti-cheat, Kernel level, Cheat detection, Video game
security, Game cheating & hacks, Games

1 INTRODUCTION
Cheating is a major problem in video games, particularly
competitive online games. According to a report by Irdeto
(2018), a cybersecurity services organisation for the digital
media industry, “60% of online gamers feel [. . . ] negatively
impacted by other players cheating”, and 77% of those
same individuals would be likely to stop playing that
online game if they believed others were attempting to gain
an unfair advantage by cheating, thereby reducing interest
in the game and harming the industry as a whole.

In response to this issue, many companies in the video
game space have created software to detect and prevent
cheaters. However, amongst many of those who enjoy

competitive online gaming, the use of certain anti-cheat
technologies is controversial. The matter of kernel-level
anti-cheat, that is, the usage of kernel ring 0 by anti-
cheat programs, is of particular concern to many users
for reasons of privacy, system stability, and, of course,
whether or not this level of access leaves the users’
systems vulnerable to attack (Orallo 2020). This concern
is, in fact, not unfounded. The kernel-level anti-cheat
used in the popular role-playing game Genshin Impact,
mhyprot2.sys, is used by ransomware actors in the wild
to disable antivirus software before malware deployment
(Soliven and Kimura 2022).

This in and of itself provides sufficient justification
to undertake a project in this area, as the discovery of
security flaws in these kinds of software could be of
great concern to a large number of individuals, a total of
320 popular video games make use of this controversial
technique (Pilipović 2022), representing a large section of
the over 2 billion people strong PC video game market
(Karkallis et al. 2021). However, very little is currently
known about the internal workings of anti-cheat software.
This is, in part, purposeful because anti-cheat developers
are unable to discern malicious analysis (i.e., creating
cheats) with genuine security analysis. As a result of
this, the developers of these programs tend to obfuscate
their code to a significant degree (cppcoder10291 2020).
Nevertheless, many cheat developers can locate and exploit
issues in anti-cheat to develop their programs, and it is
within these that vulnerabilities may be discovered.

Figure 1 – An example of a user using so-called
‘wall-hack’ cheats in the video game Counter Strike:
Global Offensive, (adapted fromMaario et al. 2021)

This project aims to evaluate the capability of video
game anti-cheat software to effectively identify vulnerabili-
ties that may have a detrimental effect on the end user. The
scope of this project can be deconstructed into 3 specific
research questions:

1. How vulnerable are anti-cheat services, particularly
the ones that make use of kernel ring 0 permissions,
to compromise by a malicious actor?

2. How can the methods used in video game cheat and
anti-cheat software be applied in a wider security
context?

3. Given anti-cheat platforms’ historically opaque ap-
proach to their technology, what insight can analysis
of cheat software give to vulnerabilities in the anti-
cheat software it is attempting to exploit?

1



2 BACKGROUND
The negative impact that cheating has on the experience of
the players and the functioning of the video game industry
cannot be overstated. This impact is well established across
the literature to cover several domains, from the video
game industry’s profit, to user gameplay enjoyment, and, of
course, the security of both. Hence, the discovery of these
flaws (particularly in the field of security) is paramount
to the continued success and enjoyment of video games
generally.

Research carried out by Maario et al. (2021) concludes
that current methods, particularly those which are run on
the client side, are fundamentally inadequate to counteract
cheating due to both the ”arms race” between anti-
cheat and cheat developers (which the authors compare
to malware development), and for the inherent security
and privacy issues that come with kernel-level anti-cheat
drivers, which are becoming ever more prevalent due to
the aforementioned arms race.

The authors go into quite some detail regarding the
concerns they have around this method of anti-cheat,
specifically regarding false flags causing system instability,
with the example of Riot’s Vanguard system causing the
device to overheat if it detected a specific RGB driver,
developer misuse, providing the example of a rogue
developer for ESEA (E-Sports Entertainment Association)
misusing kernel-level access to install bitcoin miners, as
well as the obvious possibility of a buffer overflow (or
other such vulnerability) being exploited in the kernel-
lever driver to allow arbitrary access to the entire target
device.

Karkallis et al. (2021), however, were particularly
interested in the use of so-called ‘injectors’ in cheat
software, as well as the interactions that occur in online
game cheating forums. Injectors themselves are of great
importance in a wider security context as they may allow
for an arbitrary, possibly malicious piece of code to be
executed within the context of a separate process (i.e.,
the video game or kernel-level driver). The authors of
this paper also put great emphasis on the community
surrounding cheat development, and have thus identified
UnknownCheats and MPGH as the two primary cheat
distribution platforms, with hundreds of thousands of
users on each, as well as the most common games that are
being exploited on both, seen in Figure 2.

Figure 2 – Top 10 games by number of posts in
UnknownCheats (left) and MPGH (right) from January
2018 until May 2020, (adapted from Karkallis et al.

2021)

Karkallis et al. also repeatedly refer to the similarity
between cheat software communities and those around
malware and other more illegal and/or illicit activities.
This is done explicitly, with references to injectors them-
selves being used in malware deployment, recommended
detection software using techniques ”widely proposed [. . . ]
for malware”, and repeated references to ”underground

forums [. . . ] similar to other online communities focused
on illicit and even illegal activities”. This connection
between cheaters and malware developers is continued
when the authors refer to the ”strong cooperation which
sometimes is promoted by a financial incentive”, akin to
malware devs selling zero days and so on. Collectively, this
depiction of the cheat community and malware develop-
ment communities as being closely linked illustrates the
potential for technical overlap.

Yan and Randell (2009) give great attention to the
matter of video game security. The authors take the
approach, in certain sections of the article, that video
games are distributed internet applications and, as such,
should evoke the same security concerns as other such
applications. In many cases, such as in payment methods
and hosting system security, these concerns are validated
by providing security infrastructure, however, the authors
argue that this is only because these concerns are shared
across many internet applications. The authors are also
careful to make the distinction between game systems
(i.e., what can be seen on-screen) and underlying systems,
which include things like targeting networking, operating
systems, and so on. Anti-cheat is expected to be able to
detect and prevent both of these, and as such both are of
equal importance in the context of this work.

The authors conclude, amongst other things, that
cheating is largely a result of various security failures,
indeed, their taxonomy of online cheating concludes that
exploiting design inadequacies in in-game systems is an
exceedingly common method of cheating that can result
in information theft, service denial, integrity failure,
masquerade, and fairness violation.

3 METHOD
3.1 Research
The first phase of this stage of the report will be a review
of the literature regarding the current state of the field of
game cheat and anti-cheat development. This section will
contain a critical analysis of prior research, including both
academic sources such as peer-reviewed journal articles,
conference papers, etc., as well as non-academic sources
such as conference talk videos, articles, and other such
online resources. Due to a lack of prior academic research
in this field, non-academic sources are of particular utility
to this project.

In addition to this, considerable research will be
conducted into the online cheating community, their
methods, forums, resources, and, of course, the games
they are targeting. This is to achieve two goals, the first
is to identify in what ways if any, the online cheating
community’s practises and knowledge can be appropriated
into standard security practise, as well as any possible
methods that could be used for the technical parts of
the report itself, and the second is to gain a greater
understanding of the state of the ”scene” to more effectively
apply the findings of the report to a real-world context.

Finally, a small amount of research will also be
conducted into tooling that can be used to some effect
during the analysis phase. In particular, efforts will
be made to locate and compare satisfactory reverse
engineering tools such as Ghidra, Radare2, and IDA Pro.
3.2 Analysis
As previously mentioned, a result of anti-cheat platforms’
desire to not be compromised by technically able cheaters

2



is a considerable amount of effort being put into making
sure their software is not truly understood by anyone
outwith the team of developers working on said anti-
cheat. Whilst this is an almost textbook example of security
through obscurity, a disadvantage of this is if there were a
serious security (or indeed other) flaw in the code base, it
is much harder for legitimate security analysts to discover
these issues and allow them to be fixed.

As a result of this, the methodology in this work
will place much less emphasis on analysis of the anti-
cheat systems themselves and instead focus on reverse
engineering the cheats that attempt to exploit these
systems. These cheats are more than likely to functionally
serve as proofs-of-concept for vulnerabilities either within
the anti-cheat itself or some other critical system within the
game.

Particular focus will be placed on those cheats and anti-
cheats that primarily exist on the client side. This is due to
several factors. Firstly, because client-side cheats modify
files on disk, any vulnerabilities that occur as a result of
either the cheat or anti-cheat will necessarily also be on
disk and therefore will present more of a threat to the
end user. Secondly, however, the concerns many users
have about anti-cheat invasiveness are most clearly realised
when client-side services are running, occasionally without
clear consent from the user, as an example, Valve’s VAC
has been reported to have accessed users’ browsing history
(Maario et al. 2021). Finally, both static and dynamic
analysis can more easily be carried out on systems that exist
primarily or exclusively locally.

Static analysis will primarily be conducted using a
disassembler/decompiler tool such as Ghidra or Radare2,
as well as other miscellaneous tools such as VirusTotal
to ensure there are no malware signatures present and
PeStudio to analyse executables for other possible concerns
and Windows API calls that may give some hint as to what
the software is doing

Regarding dynamic analysis, however, two methods
will be explored, the first will be deploying cheats for
specific games in a live environment. This will be done
in such a way as to ensure no other users are negatively
impacted, such as the creation of private lobbies. The
second, however, is through the use of tooling such as
KACE (Kernel Anti-Cheat Emulator), which allows users
to deploy software developed for Kernel Ring 0 in a Ring 3
(userland) environment.
3.3 Evaluation
Finally, a critical evaluation of the findings in the Analysis
section will be undertaken to achieve three goals, which
are as follows. Firstly, to determine where weaknesses
are in the anti-cheat platforms for them to be patched.
Secondly, to more fully understand how, if indeed there
is a way, to integrate methods used in the cheat and anti-
cheat communities into other areas of cybersecurity and
secure development. And lastly, to critically evaluate
how successful the paper was in determining the inner
workings of selected anti-cheat software via the chosen
method of analysing software specifically designed to
evade anti-cheat platforms’ techniques, to apply this
technique more widely.

4 SUMMARY
In summary, in carrying out this project, the aim
will be to analyse the security and effectiveness of a

selection of anti-cheat platforms through the technique of
reverse engineering the very cheats that are attempting
to circumvent these software platforms. This work, if
successful, is to benefit the security community in several
ways.

These ways include the possible discovery of security
flaws, new techniques for detection evasion that may
be applied in anti-virus or intrusion detection system
contexts, and a greater depth of understanding around
how to utilise exploits to comprehend the software they are
attempting to exploit.

Prior research focuses primarily on improving the
effectiveness of the anti-cheat software platforms, be
it through newfound techniques, client-server models,
machine learning algorithms, and so on. In contrast, this
work is less concerned with the effectiveness of anti-cheat
in its stated objectives, but more so with the security of
the devices on which the anti-cheat is running, as well as
what insights the respective communities can offer to the
information security industry at large.

5 REFERENCES
cppcoder10291 (Feb. 10, 2020). How to Reverse Engineer

an Anti Cheat? r/REGames. url: www . reddit . com /
r / REGames / comments / f1rgai / how _ to _ reverse _

engineer_an_anti_cheat/ (visited on Oct. 2, 2022).
Irdeto (2018). Irdeto Global Gaming Survey: The Last

Checkpoint For Cheating. Irdeto. url: https : / /

resources . irdeto . com / irdeto - global - gaming -

survey/irdeto- global- gaming- survey- report- 2

(visited on Oct. 1, 2022).
Karkallis, Panicos et al. (Oct. 4, 2021). “Detecting Video-

Game Injectors Exchanged in Game Cheating Commu-
nities”. In: Computer Security – ESORICS 2021: 26th
European Symposium on Research in Computer Security,
Darmstadt, Germany, October 4–8, 2021, Proceedings,
Part I. Berlin, Heidelberg: Springer-Verlag, pp. 305–324.
isbn: 978-3-030-88417-8. doi: 10.1007/978- 3- 030-
88418-5_15. url: https://doi.org/10.1007/978-3-
030-88418-5_15 (visited on Sept. 28, 2022).

Maario, Anton et al. (Aug. 26, 2021). “Redefining the Risks
of Kernel-Level Anti-Cheat in Online Gaming”. In:
2021 8th International Conference on Signal Processing
and Integrated Networks (SPIN), pp. 676–680. doi: 10.
1109/SPIN52536.2021.9566108.

Orallo, Aim (May 28, 2020). Why Should You Worry about
Kernel-Level Anti-Cheat? Micky. url: https://micky.
com.au/why- should- you- worry- about- kernel-

level-anti-cheat/ (visited on Oct. 1, 2022).
Pilipović, Šerif (Sept. 29, 2022). Every Game with Ker-

nel–Level Anti–Cheat Software (2022). url: https : / /
levvvel . com / games - with - kernel - level - anti -

cheat-software/ (visited on Oct. 2, 2022).
Soliven, Ryan and Hitomi Kimura (Aug. 24, 2022).

Ransomware Actor Abuses Genshin Impact Anti-Cheat
Driver to Kill Antivirus. Trend Micro. url: https : / /
www . trendmicro . com / en _ us / research / 22 / h /

ransomware-actor-abuses-genshin-impact-anti-

cheat-driver-to-kill-antivirus.html (visited on
Oct. 1, 2022).

Yan, Jeff and Brian Randell (May 1, 2009). “An Investiga-
tion of Cheating in Online Games”. In: IEEE Security &
Privacy 7, pp. 37–44. doi: 10.1109/MSP.2009.60.

3

www.reddit.com/r/REGames/comments/f1rgai/how_to_reverse_engineer_an_anti_cheat/
www.reddit.com/r/REGames/comments/f1rgai/how_to_reverse_engineer_an_anti_cheat/
www.reddit.com/r/REGames/comments/f1rgai/how_to_reverse_engineer_an_anti_cheat/
https://resources.irdeto.com/irdeto-global-gaming-survey/irdeto-global-gaming-survey-report-2
https://resources.irdeto.com/irdeto-global-gaming-survey/irdeto-global-gaming-survey-report-2
https://resources.irdeto.com/irdeto-global-gaming-survey/irdeto-global-gaming-survey-report-2
https://doi.org/10.1007/978-3-030-88418-5_15
https://doi.org/10.1007/978-3-030-88418-5_15
https://doi.org/10.1007/978-3-030-88418-5_15
https://doi.org/10.1007/978-3-030-88418-5_15
https://doi.org/10.1109/SPIN52536.2021.9566108
https://doi.org/10.1109/SPIN52536.2021.9566108
https://micky.com.au/why-should-you-worry-about-kernel-level-anti-cheat/
https://micky.com.au/why-should-you-worry-about-kernel-level-anti-cheat/
https://micky.com.au/why-should-you-worry-about-kernel-level-anti-cheat/
https://levvvel.com/games-with-kernel-level-anti-cheat-software/
https://levvvel.com/games-with-kernel-level-anti-cheat-software/
https://levvvel.com/games-with-kernel-level-anti-cheat-software/
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://doi.org/10.1109/MSP.2009.60

	INTRODUCTION
	BACKGROUND
	METHOD
	Research
	Analysis
	Evaluation

	SUMMARY
	REFERENCES

