— il

CMP201 — DATA STRUCTURES AND ALGORITHMS 1

REAL WORLD PROBLEM

PROBLEM

PROBLEM

SOLUTION

ALGORITHMS
Boyer-Moore Rabin-Karp
= Best case O(n/m) = Average AND Best-case O(n+m)
= Worst case O(mn) = Worst case O(mn)
= Usually considered standard = | ke Boyer-Moore
= (probably) used in most ctrl+F functions = But doesn't immediately consider content, only

length and hash value

ABSTRACT DATA TYPES

WHERE THEY DIFFER FROM STANDARD

MACROS

m Used here instead of const int

= Set when program is compiled

ARRAYS

m nPattern is an array of Boolean values, if inPattern[x] == true, ascii x is in pattern

= The program can choose the position it needs to enter or retrieve data from the array

= Time complexity is O(1)

VECTORS

m \ector used for file open function

= A dynamic array (therefore O(1)), which is useful for storing text files

COMPARISONS

HYPOTHESIS

= As touched on previously, Boyer-Moore best case = O(n/m) and worst case = O(nm)

= Rabin-Karp best and average case = O(n+m) and worst case = O(nm)

= BOTH algorithms likely to perform near worst case in some situations

= Rabin-Karp better when files larger (not skip reliant)

EXPLANATION OF PROCESS

m 3 text files, each 2 orders of magnitude bigger than the last (approximately)

= The next few slides will be of box plots of the amount of time each algorithm took to get through
each size file

= The size of the input will be varied, as will the size of the file
= Each test will be conducted 5 times and a box plot will be created from that range

= Each string will be taken at random from the text file in question

SMALL
INPUT/SMALL
TEXT

SMALL
INPUT/MEDIUM
TEXT

5400
5200
5000
4800
4600
3400
2200
4000
3800
3600
3400
3200
3000
2800
2600

SMALL
INPUT/LARGE
TEXT

800000
750000
700000
659000
El
608000
4
(]
550000
e
560000
450000
400000

350000

MEDIUM
INPUT/SMALL
TEXT

MEDIUM
INPUT/MEDIUM
TEXT

MEDIUM
INPUT/LARGE
TEXT

4400
4200
4000
3800
’gboo
3400
5
5200
(]
=
3000
2800
2600
2400
2200

LARGE
INPUT/SMALL
TEXT

LARGE
INPUT/MEDIUM
TEXT

LARGE
INPUT/LARGE
TEXT

4200
4000
3800
3600
3400
=
2200
—
2000
2800
2600
2400

2200

POSSIBLE SOURCES OF ERROR

= Developed across multiple platforms (Windows and Manjaro Linux)

= Built in functions measure time (std::chrono::high_resolution_clock)

CONCLUSION

CONCLUSION

= Rabin-Karp improves as the size of the pattern increases/the number of hits decreases
= This is because Boyer-Moore doesn’t deal well with smaller charsets
= However if the input is smaller Boyer-Moore performs better

= Qut of the two algorithms | would recommend Rabin-Karp here (although | imagine there are
better algorithms available)

THANK YOU!

