
Honours Project Feasibility Study: Artefacts

Isaac Basque-Rice

BSc. (Hons.) Ethical Hacking
Abertay University

Dundee, United Kingdom
1901124@abertay.ac.uk

29th November, 2022

Contents

1 Gantt Chart 1

2 Risk Analysis 2
2.1 Technical Risks . 2

2.1.1 Possible Presence of Malware 2
2.1.2 Technical Faults . 2

2.2 Non-Technical Risks . 3
2.2.1 Breach of Terms and Conditions 3
2.2.2 Physical Concerns . 3
2.2.3 Interaction With Other Players 3
2.2.4 Scope Creep . 3

2.3 Risk Analysis Matrix . 4

3 Research Questions 5

4 Statement of Change 6

5 Extended Literature Review 7
5.1 An Overview Of Video Game Security 7

5.1.1 Security in Online Games: Current Implementations
and Challenges . 7

5.1.2 Information security as a countermeasure against cheat-
ing in video games . 7

5.1.3 Video Game Security: The Future Belongs to Machines 8
5.2 Current Cheat and Anti-Cheat Techniques 9

5.2.1 Cheating in video games: The A to Z 9
5.2.2 Comparative Study of Anti-cheat Methods in Video

Games . 9
5.3 Vulnerable Driver Concerns 11

5.3.1 What’s the Deal With Anti-Cheat Software in Online
Games? . 11

5.3.2 Ransomware Actor Abuses Genshin Impact Anti-Cheat
Driver to Kill Antivirus 12

5.3.3 Driver-Based Attacks: Past and Present 12
5.3.4 What Does It Take to Catch a Cheater in 2020? 13

6 Notes on the Xenos Process Injector 14
6.1 Why Choose Xenos? . 14
6.2 Description . 15
6.3 Pre-Decompilation tasks . 16

6.4 Notes from README . 16
6.5 PE Studio . 17
6.6 Decompilation . 18
6.7 Code Review . 19

7 References 20

1 Gantt Chart

Figure 1: The Gantt Chart for the Video Game Anti-Cheat Security Honours Project

1

2 Risk Analysis

2.1 Technical Risks

2.1.1 Possible Presence of Malware

Whilst the forums I will be using to download cheat software do claim to
perform manual malware checks on each uploaded file, there is truthfully no
way to be entirely sure that any given file I download will not contain mal-
ware. This is especially true as many cheats, in particular process injectors,
are often flagged by Anti-Virus software (including Windows Defender) as
they interact with process memory in similar ways to genuine malware, as
such if true malware is present within the downloaded file, there will be no
way to tell at-a-glance, so to speak.

The mitigation for this concern will be to download these files first in a
virtual machine, take a hashsum of them for later use, and then make use
of a number of malware detection tools I have previously familiarised myself
with during my mini-project. The main one herein will be VirusTotal, which
first shows how many vendors treat the software in question as a malware,
but also shows a community score, which may be more trustworthy in this
instance. Failing this, of course, it is possible for me to look at what the
process does when running on VirusTotal and validate that myself, as well
as checking the forums. If the file is non-malicious I will proceed to install it
on my host machine, check the hashsum, and then begin analysis.

2.1.2 Technical Faults

There are several technical points of failure that should be borne in mind
during the execution of this project. Failure of the computer or any internal
hardware, virtual machine, or USB device is a risk that must be taken into
account

The mitigations here are twofold: Firstly, I will employ a number of
backup solutions (such as cloud based on Outlook, backing up to both PC
and Laptop, using GitHub for code, etc.) in order to prevent any serious
loss of time and effort. I also intend to use university devices for some work,
which have significant amounts of resilience to data loss built in, particularly
in the hacklab and netlab. Should my PC fail I intend to switch to using
these and my laptop full-time, or, funding permitting, purchase a new device.

2

2.2 Non-Technical Risks

2.2.1 Breach of Terms and Conditions

In many cases it may be considered a breach of terms of service or end
user license agreement to run cheats against a video game. In such such
cases, permission will be sought, either implicitly, i.e. through a bug bounty
program that expressly includes anti-cheat software (Epic Games’ Easy Anti-
Cheat, as a prime example), or explicitly, through attempted contact with
the developers. Failing this, a conversation will be had with my supervisor
around how to move forward.

2.2.2 Physical Concerns

Although this project may not be physically intensive in the traditional sense,
a number of health concerns have been identified with extended periods of
work at a computer, such as the work I will be undertaken. These risks
include, but are not necessarily limited to, carpal tunnel syndrome, eye strain
and headaches (as well as other visual issues), fatigue and stress, as well as
problems with posture.

The majority of these issues will be mitigated by ensuring I have enough
break time where required. Eye strain and headaches can be mitigated by
ensuring I have enough light and that my screens are correctly positioned.

2.2.3 Interaction With Other Players

Some of the games that have anti-cheats that will be tested are multi-player.
This naturally means that interactions with other individuals may be possible
if the cheats themselves are to be tested, which could result in a leakage of
personal details, a breach of the GDPR, and so on.

However, the functionality of the cheats is not the thing that is being
tested in this instance, and as a result, playing the games themselves, and
hence interacting with others, is relatively unlikely. In the event that both
myself and my supervisor deem it necessary to interact with others in the
course of my research, I will attempt to go through the proper channels
to recruit and gain informed consent from others in order to assist me and
prevent unnecessary intrusions into non-participants’ experience.

2.2.4 Scope Creep

As is the case with many projects, particularly the ones dictated by a single
person or small number of people, scope creep, the tendency towards adding

3

new aspects to the research project at will, is a concern. The mitigation for
this issue is to simply consult the project supervisor before any changes to
the substance of the research are made.

2.3 Risk Analysis Matrix

Impact of Risk

Probability
of Risk

Low Moderate High

High
Technical
Faults

Moderate
Breach of
Terms and
Conditions

Presence
of Malware

Low
Scope
Creep

Interaction
with Other
Players

Physical
Concerns

Table 1: Risk probability impact matrix for the video game anti-cheat
security honours project

4

3 Research Questions

The following is a list of questions my research sets out to answer:
1. How vulnerable are anti-cheat services, particularly the ones that make

use of kernel ring 0 permissions, to compromise by a malicious actor?
2. How can the methods used in video game cheat and anti-cheat software

be applied in a wider security context?
3. Given anti-cheat platforms’ historically opaque approach to their tech-

nology, what insight can analysis of cheat software give to vulnerabili-
ties in the anti-cheat software it is attempting to exploit?

5

4 Statement of Change

There have been no significant changes to my project since submission of my
project proposal.

6

5 Extended Literature Review

5.1 An Overview Of Video Game Security

5.1.1 Security in Online Games: Current Implementations and
Challenges

It is of the utmost importance that a holistic view of the security of the
video game industry is taken into account. This view is initially provided by
Parizi et al. (2019), who correctly identify the link between cheats, hacks,
and attacks on video game infrastructure whilst taking care not to conflate
the three. Many types of attacks are laid out in this paper, with specific
reference to social engineering, infrastructure attacks like Man in the Middle
and Distributed Denial of Service attacks, as well as keyloggers and, of course,
Trojans. In this way, the paper makes the point that video games are awash
with possible vulnerabilities, and remedying them is of the utmost concern.

The authors of this study conclude with a series of recommendations
around how to improve the security of video game platforms, with suggestions
such as cryptography, anti-cheat (referred to as “software which monitors
user’s [sic.] actions to prevent any misuse of the software”), and frequent
security testing. A shortfall of this paper, however, is its simplicity, in that,
a problem is identified in high-level terms, and the solution is prescribed
in the same terms, which are functionally unactionable. Additionally, no
mention is made throughout the paper of vulnerabilities within the video
game software itself, which is undoubtedly a huge oversight.

5.1.2 Information security as a countermeasure against cheating
in video games

To contrast with this, Mikkelsen (2017) provides an extensive and techni-
cally robust thesis, which likens video game cheating to the concerns of the
information security industry, provides in-depth insight into both the causes
of and solutions to cheating from an information security perspective. The
author’s comments, “Most cheating in video games is possible due to infor-
mation being accessible outside the intended frames of the game developer”,
are particularly salient given that this may as well be a definition of what
information security professionals are trying to avoid.

Mikkelsen separates the areas of concern, in their view, into two general
categories, which are networking security and application memory tampering.
Much of the network security concerns and remedies regard users’ ability to
securely place personal details, such as financial information, into in-game or

7

in-launcher forms. Many of the recommended fixes are already implemented
into many popular third-party game engines.

It is the application memory tampering, however, that has achieved more
attention from the author, in this case, “as this is the vulnerability that are
[sic.] most easily and commonly used by cheaters while also being the area
where there are less options available for current game developers to protect
their games”. The author readily admits that this area is one in which it
is particularly difficult to test, and difficult to provide solutions for due to
the fact most video game developers don’t want to write low-level drivers,
however, they imply that a game engine that could implement changes like
this as default would enjoy success on the market.

The particular fix the author suggests is the implementation of sandbox-
ing or full virtualisation later between the game and the hardware, outwith
the scope of the host operating system. This, naturally once again, would be
difficult to implement, but it would allow for greater control over the system
on which the game is run from a developer’s perspective, and would require
little modification to the host device, meaning kernel-level drivers become a
functional non-issue.

5.1.3 Video Game Security: The Future Belongs to Machines

In terms of the direction of flow for video game security in the future, God-
sey (2017) appears to view Machine Learning as the primary solution given
that, firstly, “there are too many players [. . .] that produce too much data
for any team of live humans to comb through”, and secondly, the data these
players tend to create can be analysed via a number of metrics including be-
haviour, patterns, IP addresses, and so on, with illegitimate player behaviour
being, theoretically, easily detectable in this way. These points together, in
the author’s view, result in machine learning being the obvious remedy to
cheating.

The author categorises the usefulness of ML in the video game context
into three areas, these being ML as leverage, as detective, and as watchdog.
Based on the descriptions, however, these three offer fundamentally the same
thing, that is, the idea that machine learning can detect many examples of
suspicious behaviour before their human equivalent could. This is, of course,
a possibly accurate observation, however Godsey provides no supporting ev-
idence for their case and no examples of how this has benefited the video
game industry to date.

8

5.2 Current Cheat and Anti-Cheat Techniques

5.2.1 Cheating in video games: The A to Z

In order to learn the methods by which anti-cheat services operate, it is
clearly crucial to first know how cheats themselves work. One organisation
that prides itself on counteracting video game cheats, and hence has a depth
and breadth of knowledge about cheat software, is Irdeto, a Netherlands-
based cybersecurity organisation. Irdeto’s Blaukovitsch (2022), therefore,
provides an excellent overview of what is viewed by them and their organi-
sation to be the primary methods of cheating, particularly in online games,
used in the modern day.

These “Common Tricks for Cheating in Video Games” are varied and
numerous, from aimbots and triggerbots, which allow cheaters to have perfect
aim and automatically fire when they are targeting the enemy, to wallhacks,
which allow targets to be seen through walls, and ESP and Radar, which
adds numerous elements to the user’s HUD to reveal information, such as
opponents’ locations, ability cooldowns, and so on.

This article, as with a significant number of others within this area, is
particularly light on information regarding precisely how these cheats work,
i.e., what technical methods they make use of in order to facilitate cheating.
However, it is possible to gleam rough areas cheats must be used by taking
into account recommendations Blaukovitsch, and authors like him, make.

These recommendations include, but are not limited to, prevention of
unauthorised patching and memory access, protection of communication pro-
tocols video games use, isolating the process (thereby preventing other pro-
cesses from hooking on), and obfuscation and virtualisation of the game
process. From this, we can come to understand that memory access and
manipulation are core to what cheats attempt to achieve.

5.2.2 Comparative Study of Anti-cheat Methods in Video Games

Carrying on from this, it is also undoubtedly important in this context to gain
a good understanding of what is currently being done to counteract cheating.
Whilst many of the specific techniques are, naturally, kept secret to prevent
cheat developers from gaining leverage, Lehtonen (2020) provides an excellent
comparative analysis of the overall methods they use. The author, much
like many of their contemporaries, characterises the relationship between
cheat and anti-cheat developers as a ‘cat-and-mouse game’, as detection is
crucial to AC developers and avoiding detection is equally as crucial to cheat
developers, thereby creating a race to the bottom, so to speak, between the

9

two factions. In this sense the author sees it as “largely [resembling] anti-
virus development”.

In terms of technology used, Lehtonen separates them into four server-
and five client-side anti-cheat methods and compares them across 5 separate
criteria. Note that due to a number of factors including the ease with which
they can be analysed, enhanced security concerns, and increased threat to
the end user if they were to be compromised, more focus will be placed herein
on client-side anti-cheat software. One of the conclusions they came to was
that server-side anti-cheat is much more resistant to tampering, but at the
cost of not being accurate enough for primarily client-based cheats, such as
wallhacks, as a result, there will likely be much room for client-side anti-
cheat software in the present moment, as well as in the near future. This
is of significant note as many of the security concerns many people have
regarding anti-cheat concerns software installed on their own devices.

The client-side anti-cheat methods described by the author are as follows.
Firstly, code encryption, which is frequently done via a process known as
‘packing’, essentially a form of compression, which makes static analysis of
anti-cheat significantly harder if the packer is unknown (but equally trivial
if it is known). This technique is suitable to all games and non-invasive,
however, is not tamper resistant, can be difficult to implement, and may
incur significant overhead (performance costs).

Next, file verification via hashing, wherein all the files required by the
game program are hashed and checked on a regular basis to ensure no tam-
pering has occurred. This issue has a functionally non-existent overhead and
is easy to implement, but, as the author points out, is extremely easily cir-
cumvented and hence not suitable for use on its own, when combined with
code encryption, however, it becomes a useful tool.

Detection of known cheat programs can be done in a similar way to how
anti-virus works, comparison of hashes or process names on the system to
known cheat software, however, this can be easily circumvented by changing
the process name and refactoring code to create a different executable. A
more complex detection system can, of course, be created, but this decreases
the ease with which it can be implemented. Sending data to and from the
server as opposed to interfering with game logic means overhead is minimal,
however, it is easily tampered with by individuals who possess reverse engi-
neering skills, and it is particularly intrusive, possibly allowing for sensitive
information to be revealed through program names, etc.

Memory obfuscation is the process of either relocating, encrypting, or
performing both actions on crucial pieces of data within the heap of a pro-
gram. This can be crucial as, in many video games, important variables such
as values relating to the player (health, location, money, etc.) as well as

10

variables relating to the player’s surroundings (enemy locations and so on)
are stored in the same location in memory if no intervention is made, and as
such can be accessed or even altered in some cases by the user using programs
such as CheatEngine. A concern many developers may have is the difficulty
with which this is implemented, as well as its susceptibility to tampering
on the client side, however, its powerful reach and ability to obfuscate other
anti-cheat processes as well as the game itself makes it a powerful tool in
anti-cheat developers’ arsenal.

Finally, kernel-based anti-cheat drivers are, as the name suggests, compo-
nents of anti-cheat software that reside in the kernel space. This allows them
to “spy on requests for interfacing with the game process memory”. This
gives a great degree of control of the system over to the anti-cheat process
when the game is running. This is an exceptionally tamper-resistant method
of client-side anti-cheat as access to the kernel is heavily restricted in Win-
dows for the average user. This does, however, mean that it is a particularly
difficult thing to implement, and is, of course, extremely invasive.

5.3 Vulnerable Driver Concerns

5.3.1 What’s the Deal With Anti-Cheat Software in Online Games?

Many users have concerns regarding kernel-level anti-cheat drivers being used
on their system for reasons of system stability, security, and of course, privacy.
The article by Menegus (2022) seeks to calm some of these fears through
an interview with Netragard founder Adriel Desautels, wherein she states,
amongst other things, “even when we’re delivering the most advanced level of
that service, we don’t need to use attacks that go down [to the kernel level].”,
implying that vulnerability exploitation at the kernel level is the preserve of
state actors exclusively and standard users should not have concerns.

This seems, unfortunately, an incorrect assessment. Kernel-mode rootkits
have been known for a long period of time to make use of vulnerable signed
kernel drivers (Help Net Security 2022), and, indeed, the anti-cheat driver
mhyprot2.sys has been used in the wild to disable anti-virus software prior
to ransomware deployment (Toulas 2022). The rebuttal to this point could
come later in the article, with the reference to a Street Fighter V driver
bug that allowed for arbitrary kernel-level execution, however, the speed
with which this was noticed and rectified was such that any opportunity for
exploitation in the wild was likely missed quickly.

11

5.3.2 Ransomware Actor Abuses Genshin Impact Anti-Cheat Driver
to Kill Antivirus

As mentioned, a vulnerable kernel-level anti-cheat driver, known as mhyprot2
.sys, has been used in the wild in a ransomware chain of attack. Soliven
and Kimura’s 2022 research demonstrates that even in an environment with
“properly configured endpoint protection” (otherwise known as anti-virus),
this driver can be used in the early stages of an attack to disable this protec-
tion in (theoretically) any case, independent of whether the game it belonged
to, Genshin Impact, is present on the system.

This was achieved by tricking the user into running a process called
avg.msi/avg.exe, a malware dropper masquerading as AVG Security, which
then dropped the driver and another executable onto the desktop. The sec-
ond process, kill svc.exe/HelpPane.exe, loaded the vulnerable driver us-
ing NtOpenFile, followed by a list of AV processes that it parses and passes
a control code to kill the processes if they are running on the system. This
is, naturally, followed by the normal execution of a Ransomware payload.

The authors point out that this driver become well-known in the Genshin
Impact community as it would not be removed post-uninstall and allowed for
privilege bypass on any system it was installed on. Despite this, it was not
accepted by the developers of the game as a vulnerability and, to date, has
not been fixed. As a result, it is likely that this is still an issue, especially due
to the fact that it is a legitimate driver that cannot trivially be removed once
distributed. However, only a limited number of versions of mhyprot2.sys

versions can be used, therefore hash values can be monitored in order to
prevent exploitation in most organisations.

5.3.3 Driver-Based Attacks: Past and Present

The above exploit generally falls into the category of ‘Bring Your Own Vul-
nerable Driver’ (BYOVD), the process by which a malicious actor installs
a legitimate and vulnerable driver onto a system, exploits the vulnerability
therein, gains kernel ring 0 access to the device, and uses that as leverage
to hide deeper within the system. Baines’s (2021) article on this, contrary
to Menegus’s, states that this kind of attack is definitionally worthwhile for
attackers “because they are seen in the wild”, followed by a not insignificant
number of examples, including several well-known APT attacks, attacks by
larger groups, and so on.

The authors have also written a considerable amount on the use cases, as
they see it, for a BYOVD-based attack, the primary reason being to bypass
Driver Signature Enforcement, Microsoft’s system for ensuring all kernel-level

12

drivers are legitimate, by allowing for unsigned, malicious drivers to be loaded
through vulnerable but legitimate ones. Once this is achieved, performing
actions such as arbitrary code execution, overwriting data, unhooking End-
point Detection Response callbacks, and crashing the entire system, would
be trivial.

5.3.4 What Does It Take to Catch a Cheater in 2020?

Naturally, much of the onus on preventing cheat software and malware
more generally is expected to fall on the operating system itself, however,
Greshishchev and Zuydervelt (2020) demonstrate how this is not to be
treated as the case in Windows. Microsoft’s security model in Windows,
whilst relatively robust, is shown to be nowhere near adequate enough in the
average user’s case.

The model in question begins with ‘Secure Boot’, which validates the dig-
ital signatures of bootloaders and Operating System files, however, to make
use of this requires a Windows Trusted Platform Module (TPM), which does
not have support on versions of Windows earlier than Windows 8, thereby
discounting approximately 14% of users out of hand. In addition to this,
of the many devices that do theoretically support Secure Boot, many older
devices do not have full support, and only 10% of machines that meet full
Secure Boot requirements have it enabled, despite Microsoft insisting it is
enabled by default. Additionally, Trusted Boot, which requires drivers to be
signed (and therefore theoretically limits the abilities of cheat devs to make
use of kernel-level cheats), cannot be active without Secure Boot.

The authors also identify the fact that anti-cheat detection methods are,
thanks to the introduction of several post-boot security features intended to
impact kernel-mode execution, subject to the limitation placed on AC devel-
opers by Microsoft. These limitations are not present for cheat developers
who are naturally able to use illegitimate means (vulnerability exploitation
etc.) to develop cheat software.

The primary restriction of note herein is Kernel Patch Protection (KPP),
which “monitors whether key resources or kernel code has been modified, if
so, it will initiate a shutdown of the system”. Prior to the introduction of this
system, anti-cheat and anti-virus developers would monitor user-mode Win-
dows API calls by either hooking into the Windows kernel or byte-patching
kernel code. Restricting access to this method improved system stability but
forced AC and AV developers to use formal methods for monitoring API
calls, (ObRegisterCallbacks, for example) which allows cheat developers to
anticipate how their cheats will be detected and circumvent them.

13

6 Notes on the Xenos Process Injector

• using Xenos 2.3.2 as this is one of, if not the most popular injector on
UnknownCheats (655,245 DLs)

• Can be found here w/ forum thread linked within

6.1 Why Choose Xenos?

• Originally was thinking of dumping VAC modules but decided against
as it’s not directly related

• Instead decided to RE a cheat or two
– probably from CSGO or GTA V as both are exceptionally popular

and easy to hack.
• Looking at the following files as possibilities:

– Modest Menu
∗ Pros:

· Exceedingly popular
· Cheat in and of itself

∗ Cons:
· For GTA V, a paid game

– Xenos
∗ Pros:

· Generic software
· Works to inject DLLs across a wider variety of games (incl.
GTA)

· Does do Kernel-Level stuff
∗ Cons:

· Detected as malware & because of virtualisation detection
software, dynamic testing in a VM is difficult (consult
Hubert)

· Also just an injector, not cheat in and of itself
– CSGhost

∗ Pros:
· CSGO is f2p so when i create a new steam there will be
no issues

∗ Cons:
· Only works with CSGO
· Also detected as malware
· Injector

• Will probably go with Xenos for this demo, this is for a few reasons
– It’s generic

14

https://www.unknowncheats.me/forum/downloads.php?do=file&id=23686

∗ Discovered later this means most of its interactions are with
windows (Windows Hacking Library etc.)

– Injectors are what cheats use to piggyback off of to bypass anti-
cheat and security mechanisms, therefore will likely be more rele-
vant than the actual cheats themselves

– Kernel level capabilities
– Have the capacity to reverse it outwith a Windows environment

6.2 Description

• Supports x86 and x64 processes and modules
• Kernel-mode injection feature (driver required)
• Manual map of kernel drivers (driver required)
• Injection of pure managed images without proxy dll
• Windows 7 cross-session and cross-desktop injection
• Injection into native processes (those having only ntdll loaded)
• Calling custom initialization routine after injection
• Unlinking module after injection
• Injection using thread hijacking
• Injection of x64 images into WOW64 process
• Image manual mapping
• Injection profiles
• Manual map features:

– Relocations, import, delayed import, bound import
– Static TLS and TLS callbacks
– Security cookie
– Image manifests and SxS
– Make module visible to GetModuleHandle, GetProcAddress, etc.
– Support for exceptions in private memory under DEP
– C++/CLI images are supported (use ‘Add loader reference’ in this

case)
• Kernel manual map features are mostly identical to user-mode with few
exceptions:

– No C++ exception handling support for x64 images (only SEH)
– No static TLS
– No native loader compatibility - Limited dependency path resolv-

ing. Only API set schema, SxS, target executable directory and
system directory

• Supported OS: Win7 - Win10 x64
• Changelog: +V2.3.2 - Win10 RS4 update support

15

6.3 Pre-Decompilation tasks

• Checked the file hash on VirusTotal
– Hash for the archive is

06b12c6d7ece840a3b805e7a498a4af695f793a053a63b887f6c73

95b3138bad

– Visible on the download page
– I already know Windows detects this as a virus but VT is great

for details and such.
– VT Link for the Xenos File itself here
– And for another version here

• Windows Portable Executable
• Compiled with MS Visual Studio C/C++ Compiler
• Is definitely a PE Injector
• Interesting that it’s detected as malware by so many services when the
community scores it as non-malicious, could be because it can be used
for malicious purposes? Unsure

• I have not performed the full pre-decompilation methodology as I am
confident both from my research and the above in VT that it is not
genuinely malicious, and I also have the benefit of knowing beforehand
what it does.

6.4 Notes from README

• Xenos comes with a README.txt file
• Can either

– Select an existing process
– Start a new process
– queue a process and wait for you to start it before injecting

• List of images u want to inject
• Injection Type

– 2 w/out driver
∗ Native inject - LoadLibraryW/LdrLoadDll in newly created
or existing thread

· LoadLibraryW: WIndows API function, “Loads the spec-
ified module into the address space of the calling pro-
cess. The specified module may cause other modules to
be loaded”

· LdrLoadDll: Undocumented function, presume it loads
DLLs into process space

∗ Manual map - manual copying image data into target process

16

https://www.virustotal.com/gui/file/0e6d59fcdf8f143e23b076cc8380d6d23324839ae4f91793133b600e7eb76eb9
https://www.virustotal.com/gui/file/8bdb3ce10dee7a3249a186050d7f804bca19859f292ddad7ae8c5afbb649a07b

memory without creating section object
– 3 w/ driver (Kernel)

∗ New Thread - ZwCreateThreadEx into LdrLoadDll

· ZwCreateThreadEx also undocumented, likely part of
Wdm.h given the Zw prefix

∗ APC - async procedure call into LdrLoadDll

∗ Manual map - same as above but in kernel
• Native Loader options

– Unlink module from:
∗ PEB LDR DATA

· Specific variables from this struct
· InLoadOrderModuleList

· InMemoryOrderModuleList

· InInitializationOrderModuleList

∗ HashLinks

∗ LdrpModuleBaseAddressIndex

∗ all LIST ENTRY structs
– Erase PE headers
– Use existing thread instead of creating a new one

• Manual Map options
– Insert module record into InMemoryOrderModuleList

/LdrpModuleBaseAddressIndex and HashLinks

∗ Used to make module functions work with manually mapped
image

· GetModuleHandle

· GetProcAddress

– Manually resolve imports
∗ Imports will be manually mapped instead of using
LdrLoadDll

– Wipe headers after injection
– Ignore TLS
– Don’t create custom exception handlers
– Conceal memory

• (Could very easily be used in malware drop if it wasn’t already detected
by MS, especially because. . .)

• Can be used on the command line

6.5 PE Studio

• 298 blacklisted strings
• 53/71 virustotal score

17

• 4 embedded files at 0xE0A78, 0xF0820, 0xFFBB0, 0x20F358
– Unable to locate these during decompilation

• ran with admin privs
• 58 blacklisted functions
• 1 blacklisted library (dbghelp)

– 1 function, MiniDumpWriteDump

6.6 Decompilation

• Due to the fact Xenos is detected as a virus I’ve decided to use my
Remnux VM (that I used for my MiniProject)

– Remnux is a debian-based operating system designed for Reverse
Engineering, similar to Kali but for RE

• Unsure at this stage how to dynamically analyse it, cross that bridge
when I come to it

– Likely at this stage that I will perform this later on, I don’t want
to run the risk of getting an account/device banned

• User r2’s s main command to locate main in ghidra
• Confirmed by checking its xrefs and noting that the only reference to
this function is entry

• Performing string analysis using FLOSS to locate salient strings that
may help describe specific functions

• Lots of references to “BlackBone”
– Windows Memory Hacking Library

• Marking everywhere with the word “inject”
– “Injection initiated” present, wonder what trips this?
– Full message: "Injection initiated. Mode: %d, process

type: %d, pid: %d, mmap flags: 0x%X, erasePE: %d, unlink:

%d, thread hijack: %d, init routine: \'%s\', init arg:

\'%ls\'"
– Passed as parameter to separate function
– Control characters must be referenced somewhere
– A few functions down I found a reference to

stdio common vsprintf s, which is a printf statement and re-
turns the number of characters written

• Decided to start using the imports like I would during a static malware
analysis

– In particular using the ones described in the readme (could not
find)

• Switched tack at this stage, decided to go down a research-based route
as I felt I wasn’t getting anywhere exclusively statically reversing it

18

https://github.com/DarthTon/Blackbone

• Found this github repository seemingly containing the source code

6.7 Code Review

• Appears to make extensive use of BlackBone
– Memory hacking library
– Pretty much handles everything for us, seems like Xenos is func-

tionally just a GUI to interact with BlackBone
– Lots of references in code to modules and functions that use Black-

Bone
• main

– wWinMain, documentation here
– Dumps all memory
– creates file extension association
– instantiates object for mainDlg
– logs Operating System Information
– if the action to perform is not to run the profile

∗ Dialog is run as a modeless window, allowing the user to keep
working

– else
∗ Load configuration file
∗ Inject

• Looking for Undocumented Functions
– ZwCreateThreadEx defined in Imports.h of blackbone, returns a

pointer handle to a thread
– Can’t find LdrLoadDll definition anywhere, just references to it

and variables that use that identifier
• Ran out of time at this point, have discovered lots of interesting stuff

19

https://github.com/DarthTon/Xenos
https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point

7 References

Baines, J. (Dec. 13, 2021). Driver-Based Attacks: Past and Present — Rapid7
Blog. Rapid7. url: https://www.rapid7.com/blog/post/2021/12/
13/driver-based-attacks-past-and-present/ (visited on Nov. 21,
2022).

Blaukovitsch, R. (Jan. 31, 2022). Cheating in Video Games: The A to Z.
Irdeto Insights. url: https : / / blog . irdeto . com / video - gaming /

cheating- in- games- everything- you- always- wanted- to- know-

about-it/ (visited on Nov. 25, 2022).
Godsey, B. (Mar. 6, 2017). Video Game Security: The Future Belongs to

Machines. Infosecurity Magazine. url: https://www.infosecurity-
magazine.com/opinions/video-game-security-future-machines/

(visited on Nov. 26, 2022).
Greshishchev, M. and Zuydervelt, L. (2020). What Does It Take to Catch a

Cheater in 2020? (Presented by Denuvo by Irdeto). url: https://www.
gdcvault.com/play/1026757/What- Does- It- Take- to (visited on
Nov. 20, 2022).

Help Net Security (Jan. 13, 2022). Delivering Vulnerable Signed Kernel
Drivers Remains Popular among Attackers. Help Net Security. url:
https : / / www . helpnetsecurity . com / 2022 / 01 / 13 / vulnerable -

signed-kernel-drivers/ (visited on Nov. 21, 2022).
Lehtonen, S. J. (Mar. 7, 2020). “Comparative Study of Anti-cheat Methods

in Video Games”. Helsinki, Finland: University of Helsinki, Faculty of Sci-
ence. 128 pp. url: http://urn.fi/URN:NBN:fi:hulib-202003241639.

Menegus, B. (Jan. 30, 2022). “What’s the Deal With Anti-Cheat Software in
Online Games?” In: Wired. issn: 1059-1028. url: https://www.wired.
com/story/kernel-anti-cheat-online-gaming-vulnerabilities/

(visited on Nov. 20, 2022).
Mikkelsen, K. K. (2017). “Information Security as a Countermeasure against

Cheating in Video Games”. MA thesis. NTNU. url: https://ntnuopen.
ntnu.no/ntnu- xmlui/handle/11250/2448953 (visited on Nov. 21,
2022).

Parizi, R. M. et al. (2019). “Security in Online Games: Current Implementa-
tions and Challenges”. In: Handbook of Big Data and IoT Security. Ed. by
A. Dehghantanha and K.-K. R. Choo. Cham: Springer International Pub-
lishing, pp. 367–384. isbn: 978-3-030-10543-3. doi: 10.1007/978-3-030-
10543-3_16. url: https://doi.org/10.1007/978-3-030-10543-3_16
(visited on Nov. 21, 2022).

Soliven, R. and Kimura, H. (Aug. 24, 2022). Ransomware Actor Abuses
Genshin Impact Anti-Cheat Driver to Kill Antivirus. Trend Micro. url:

20

https://www.rapid7.com/blog/post/2021/12/13/driver-based-attacks-past-and-present/
https://www.rapid7.com/blog/post/2021/12/13/driver-based-attacks-past-and-present/
https://blog.irdeto.com/video-gaming/cheating-in-games-everything-you-always-wanted-to-know-about-it/
https://blog.irdeto.com/video-gaming/cheating-in-games-everything-you-always-wanted-to-know-about-it/
https://blog.irdeto.com/video-gaming/cheating-in-games-everything-you-always-wanted-to-know-about-it/
https://www.infosecurity-magazine.com/opinions/video-game-security-future-machines/
https://www.infosecurity-magazine.com/opinions/video-game-security-future-machines/
https://www.gdcvault.com/play/1026757/What-Does-It-Take-to
https://www.gdcvault.com/play/1026757/What-Does-It-Take-to
https://www.helpnetsecurity.com/2022/01/13/vulnerable-signed-kernel-drivers/
https://www.helpnetsecurity.com/2022/01/13/vulnerable-signed-kernel-drivers/
http://urn.fi/URN:NBN:fi:hulib-202003241639
https://www.wired.com/story/kernel-anti-cheat-online-gaming-vulnerabilities/
https://www.wired.com/story/kernel-anti-cheat-online-gaming-vulnerabilities/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2448953
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2448953
https://doi.org/10.1007/978-3-030-10543-3_16
https://doi.org/10.1007/978-3-030-10543-3_16
https://doi.org/10.1007/978-3-030-10543-3_16

https://www.trendmicro.com/en_us/research/22/h/ransomware-

actor - abuses - genshin - impact - anti - cheat - driver - to - kill -

antivirus.html (visited on Oct. 1, 2022).
Toulas, B. (Aug. 25, 2022). Hackers Abuse Genshin Impact Anti-Cheat

System to Disable Antivirus. BleepingComputer. url: https://www.
bleepingcomputer.com/news/security/hackers- abuse- genshin-

impact - anti - cheat - system - to - disable - antivirus/ (visited on
Nov. 21, 2022).

21

https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.trendmicro.com/en_us/research/22/h/ransomware-actor-abuses-genshin-impact-anti-cheat-driver-to-kill-antivirus.html
https://www.bleepingcomputer.com/news/security/hackers-abuse-genshin-impact-anti-cheat-system-to-disable-antivirus/
https://www.bleepingcomputer.com/news/security/hackers-abuse-genshin-impact-anti-cheat-system-to-disable-antivirus/
https://www.bleepingcomputer.com/news/security/hackers-abuse-genshin-impact-anti-cheat-system-to-disable-antivirus/

	Gantt Chart
	Risk Analysis
	Technical Risks
	Possible Presence of Malware
	Technical Faults

	Non-Technical Risks
	Breach of Terms and Conditions
	Physical Concerns
	Interaction With Other Players
	Scope Creep

	Risk Analysis Matrix

	Research Questions
	Statement of Change
	Extended Literature Review
	An Overview Of Video Game Security
	Security in Online Games: Current Implementations and Challenges
	Information security as a countermeasure against cheating in video games
	Video Game Security: The Future Belongs to Machines

	Current Cheat and Anti-Cheat Techniques
	Cheating in video games: The A to Z
	Comparative Study of Anti-cheat Methods in Video Games

	Vulnerable Driver Concerns
	What's the Deal With Anti-Cheat Software in Online Games?
	Ransomware Actor Abuses Genshin Impact Anti-Cheat Driver to Kill Antivirus
	Driver-Based Attacks: Past and Present
	What Does It Take to Catch a Cheater in 2020?

	Notes on the Xenos Process Injector
	Why Choose Xenos?
	Description
	Pre-Decompilation tasks
	Notes from README
	PE Studio
	Decompilation
	Code Review

	References

