
Using CPU 

Multithreading to 

Parallelise the 

Mandelbrot 

Algorithm
ISAAC BASQUE-RICE 

(1901124) – CMP202



What is the 
Mandelbrot 
Set?

 A symmetrical 
geometric fractal

 Can zoom in to the set 
infinitely, will 
eventually repeat itself

 Makes use of a 
complex equation 
that means 
generation can take 
some time and/or a 
lot of processing 
power



What is the 

problem?

Requires a lot of processing 
power

It can take a long time even 
with good hardware

Need to find a way to make it 
more efficient



How was the 

algorithm 

tested?

The program allows you to 
choose colour

The program was run 9 times 
per thread count

Timing begins when generation 
begins and ends when it’s 
written to the file



My 

Hardware/Software 

Configuration

Dell Inspiron laptop with 
Manjaro Linux installed

CLion IDE running Clang 
compiler 

Intel Core i3-6006 CPU @ 
2.0GHz



How long does it take to 
run on its own?



Original Mandelbrot Program



How can we 

make this 

more 

efficient?

Split the image up and work on 
the chunks individually

If we can work on multiple 
chunks at once we can reduce 
the amount of time needed



Testing this 

approach

 Black background, coloured foreground

 Only difference from image to image is colour

 Clock begins when generation begins and 

ends when written to file

 Ran 9 times

 Split into 1, 2, 4, 8, 12, and 16 chunks

 Also function that outputs metadata about the 

image





1 Thread 

Timings

 15664 ms

 10724 ms

 10474 ms

 10561 ms

 13101 ms

 12180 ms

 11855 ms

 12670 ms

 11646 ms



2 Thread 

Timings

 7580 ms

 9638 ms

 8147 ms

 7564 ms

 7600 ms

 7845 ms

 7828 ms

 7669 ms

 7608 ms



4 Thread 

Timings

 7147 ms

 7194 ms

 7197 ms

 7231 ms

 7374 ms

 6995 ms

 7313 ms

 6871 ms

 7200 ms



8 Thread 

Timings

 4806 ms

 4696 ms

 4782 ms

 4759 ms

 4903 ms

 5006 ms

 4708 ms

 4711 ms

 5139 ms



12 Thread 

Timings

 4711 ms

 4449 ms

 4727 ms

 4647 ms

 4537 ms

 4892 ms

 4563 ms

 4862 ms

 4708 ms



16 Thread 

Timings

 4605 ms

 4531 ms

 4537 ms

 4766 ms

 4657 ms

 4466 ms

 4563 ms

 4555 ms

 4807 ms



How much 

faster is using 

threads? (on 

average)

Average without multithreading: 19238.11 ms

1 thread: 12097.22 ms (37.12%)

2 threads: 7942.11 ms (58.72%)

4 threads: 7169.11 ms (62.74%)

8 threads: 4834.44 ms (74.87%)

12 threads: 4677.33 ms (75.69%)

16 threads: 4609.67 ms (76.04%)



Results

 Multithreading the program has a significant impact on the speed 

at which it is run, but only up to a certain point due to CPU 

constraints

 In conclusion, parallelising the program using CPU multithreading 

affords a significant time advantage over generating it from a single 

function.



So how did I go 

about parallelising 

the Mandelbrot Set?



Requirements

Running at least 
three threads, with 
at least two 
different thread 
functions

01
Sharing resources 
safely between 
threads

02
Signalling 
between threads

03



Thread 

functions

 The Mandelbrot was computed using an array of 
threads (threads[i])

 A thread that wrote the current time out to a text file

 Arguably also the main thread, where I called 
write_tga()



Sharing 

Resources

 Used Mutexes and Atomic 

Variables

 Mutex:

 Locks a condition variable 

that prevents the program 

from continuing

 Atomic Integer:

 Keeps track of the number of 

threads run by incrementing 

when a thread is finished



Signalling 

between 

threads

 Condition Variable:

 Used to prevent program rushing ahead

 In tandem with mutex



Thank you for 

listening


