
Using CPU 

Multithreading to 

Parallelise the 

Mandelbrot 

Algorithm
ISAAC BASQUE-RICE 

(1901124) – CMP202



What is the 
Mandelbrot 
Set?

 A symmetrical 
geometric fractal

 Can zoom in to the set 
infinitely, will 
eventually repeat itself

 Makes use of a 
complex equation 
that means 
generation can take 
some time and/or a 
lot of processing 
power



What is the 

problem?

Requires a lot of processing 
power

It can take a long time even 
with good hardware

Need to find a way to make it 
more efficient



How was the 

algorithm 

tested?

The program allows you to 
choose colour

The program was run 9 times 
per thread count

Timing begins when generation 
begins and ends when it’s 
written to the file



My 

Hardware/Software 

Configuration

Dell Inspiron laptop with 
Manjaro Linux installed

CLion IDE running Clang 
compiler 

Intel Core i3-6006 CPU @ 
2.0GHz



How long does it take to 
run on its own?



Original Mandelbrot Program



How can we 

make this 

more 

efficient?

Split the image up and work on 
the chunks individually

If we can work on multiple 
chunks at once we can reduce 
the amount of time needed



Testing this 

approach

 Black background, coloured foreground

 Only difference from image to image is colour

 Clock begins when generation begins and 

ends when written to file

 Ran 9 times

 Split into 1, 2, 4, 8, 12, and 16 chunks

 Also function that outputs metadata about the 

image





1 Thread 

Timings

 15664 ms

 10724 ms

 10474 ms

 10561 ms

 13101 ms

 12180 ms

 11855 ms

 12670 ms

 11646 ms



2 Thread 

Timings

 7580 ms

 9638 ms

 8147 ms

 7564 ms

 7600 ms

 7845 ms

 7828 ms

 7669 ms

 7608 ms



4 Thread 

Timings

 7147 ms

 7194 ms

 7197 ms

 7231 ms

 7374 ms

 6995 ms

 7313 ms

 6871 ms

 7200 ms



8 Thread 

Timings

 4806 ms

 4696 ms

 4782 ms

 4759 ms

 4903 ms

 5006 ms

 4708 ms

 4711 ms

 5139 ms



12 Thread 

Timings

 4711 ms

 4449 ms

 4727 ms

 4647 ms

 4537 ms

 4892 ms

 4563 ms

 4862 ms

 4708 ms



16 Thread 

Timings

 4605 ms

 4531 ms

 4537 ms

 4766 ms

 4657 ms

 4466 ms

 4563 ms

 4555 ms

 4807 ms



How much 

faster is using 

threads? (on 

average)

Average without multithreading: 19238.11 ms

1 thread: 12097.22 ms (37.12%)

2 threads: 7942.11 ms (58.72%)

4 threads: 7169.11 ms (62.74%)

8 threads: 4834.44 ms (74.87%)

12 threads: 4677.33 ms (75.69%)

16 threads: 4609.67 ms (76.04%)



Results

 Multithreading the program has a significant impact on the speed 

at which it is run, but only up to a certain point due to CPU 

constraints

 In conclusion, parallelising the program using CPU multithreading 

affords a significant time advantage over generating it from a single 

function.



So how did I go 

about parallelising 

the Mandelbrot Set?



Requirements

Running at least 
three threads, with 
at least two 
different thread 
functions

01
Sharing resources 
safely between 
threads

02
Signalling 
between threads

03



Thread 

functions

 The Mandelbrot was computed using an array of 
threads (threads[i])

 A thread that wrote the current time out to a text file

 Arguably also the main thread, where I called 
write_tga()



Sharing 

Resources

 Used Mutexes and Atomic 

Variables

 Mutex:

 Locks a condition variable 

that prevents the program 

from continuing

 Atomic Integer:

 Keeps track of the number of 

threads run by incrementing 

when a thread is finished



Signalling 

between 

threads

 Condition Variable:

 Used to prevent program rushing ahead

 In tandem with mutex



Thank you for 

listening


